An isoparametric approach to high-order curvilinear boundary-layer meshing

[1]  Spencer J. Sherwin,et al.  On the Generation of Curvilinear Meshes Through Subdivision of Isoparametric Elements , 2015 .

[2]  Jörg Stiller,et al.  Generation of High-Order Polynomial Patches from Scattered Data , 2014 .

[3]  Rémi Abgrall,et al.  High‐order CFD methods: current status and perspective , 2013 .

[4]  K. Morgan,et al.  The generation of arbitrary order curved meshes for 3D finite element analysis , 2013 .

[5]  Josep Sarrate Ramos,et al.  Inserting curved boundary layers for viscous flow simulation with high-order tetrahedra , 2013 .

[6]  Xevi Roca,et al.  Defining Quality Measures for Validation and Generation of High-Order Tetrahedral Meshes , 2013, IMR.

[7]  Christophe Geuzaine,et al.  Geometrical validity of high-order triangular finite elements , 2014, Engineering with Computers.

[8]  Christophe Geuzaine,et al.  Robust untangling of curvilinear meshes , 2013, J. Comput. Phys..

[9]  Robert Haimes,et al.  On the impact of triangle shapes for boundary layer problems using high-order finite element discretization , 2010, J. Comput. Phys..

[10]  Antony Jameson,et al.  Facilitating the Adoption of Unstructured High-Order Methods Amongst a Wider Community of Fluid Dynamicists , 2011 .

[11]  T. Banchoff,et al.  Differential Geometry of Curves and Surfaces , 2010 .

[12]  M. Shephard,et al.  Curved boundary layer meshing for adaptive viscous flow simulations , 2010 .

[13]  Robert M. O'Bara,et al.  Construction of near optimal meshes for 3D curved domains with thin sections and singularities for p-version method , 2010, Engineering with Computers.

[14]  J. Remacle,et al.  Gmsh: A 3‐D finite element mesh generator with built‐in pre‐ and post‐processing facilities , 2009 .

[15]  A. U.S.,et al.  Curved Mesh Generation and Mesh Refinement using Lagrangian Solid Mechanics , 2009 .

[16]  Christophe Geuzaine,et al.  Gmsh: A 3‐D finite element mesh generator with built‐in pre‐ and post‐processing facilities , 2009 .

[17]  G. Karniadakis,et al.  Spectral/hp Element Methods for Computational Fluid Dynamics , 2005 .

[18]  S. Sherwin,et al.  Mesh generation in curvilinear domains using high‐order elements , 2002 .

[19]  H. Fernholz Boundary Layer Theory , 2001 .

[20]  Marie-Gabrielle Vallet,et al.  How to Subdivide Pyramids, Prisms, and Hexahedra into Tetrahedra , 1999, IMR.

[21]  Sailkat Dey,et al.  Curvilinear Mesh Generation in 3D , 1999, IMR.

[22]  Nadia Magnenat-Thalmann,et al.  The SPHERIGON: a simple polygon patch for smoothing quickly your polygonal meshes , 1998, Proceedings Computer Animation '98 (Cat. No.98EX169).

[23]  Kenneth Morgan,et al.  Unstructured mesh generation including directional refinement for aerodynamic flow simulation , 1997 .

[24]  D. Mavriplis UNSTRUCTURED GRID TECHNIQUES , 1997 .

[25]  Shahyar Pirzadeh,et al.  Three-dimensional unstructured viscous grids by the advancing-layers method , 1996 .

[26]  J. Peraire,et al.  Multigrid solution of the 3‐D compressible euler equations on unstructured tetrahedral grids , 1993 .

[27]  V. Schmitt,et al.  Pressure distributions on the ONERA M6 wing at transonic Mach numbers , 1979 .

[28]  W. J. Gordon,et al.  Construction of curvilinear co-ordinate systems and applications to mesh generation , 1973 .

[29]  O. C. Zienkiewicz,et al.  An automatic mesh generation scheme for plane and curved surfaces by ‘isoparametric’ co‐ordinates , 1971 .