Characterization of the glucosyltransferase activity of Legionella pneumophila effector SetA

[1]  H. Hilbi,et al.  Formation of the Legionella-containing vacuole: phosphoinositide conversion, GTPase modulation and ER dynamics. , 2017, International journal of medical microbiology : IJMM.

[2]  C. Roy,et al.  Autophagy Evasion and Endoplasmic Reticulum Subversion: The Yin and Yang of Legionella Intracellular Infection. , 2016, Annual review of microbiology.

[3]  K. Aktories,et al.  Roles of Asp179 and Glu270 in ADP-Ribosylation of Actin by Clostridium perfringens Iota Toxin , 2015, PloS one.

[4]  R. Isberg,et al.  Master manipulators: an update on Legionella pneumophila Icm/Dot translocated substrates and their host targets. , 2014, Future microbiology.

[5]  J. Fernández-Recio,et al.  Structural Basis for Rab1 De-AMPylation by the Legionella pneumophila Effector SidD , 2013, PLoS pathogens.

[6]  R. Goody,et al.  Mechanism of Rab1b deactivation by the Legionella pneumophila GAP LepB , 2013, EMBO reports.

[7]  K. Aktories,et al.  Domain organization of Legionella effector SetA , 2012, Cellular microbiology.

[8]  R. Goody,et al.  Reversible phosphocholination of Rab proteins by Legionella pneumophila effector proteins , 2012, The EMBO journal.

[9]  Zhao‐Qing Luo,et al.  Legionella pneumophila regulates the small GTPase Rab1 activity by reversible phosphorylcholination , 2011, Proceedings of the National Academy of Sciences.

[10]  J. Galán,et al.  Modulation of Rab GTPase function by a protein phosphocholine transferase , 2011, Nature.

[11]  A. Yergey,et al.  De-AMPylation of the Small GTPase Rab1 by the Pathogen Legionella pneumophila , 2011, Science.

[12]  K. Aktories,et al.  Effector Glycosyltransferases in Legionella , 2011, Front. Microbio..

[13]  R. Goody,et al.  The Legionella Effector Protein DrrA AMPylates the Membrane Traffic Regulator Rab1b , 2010, Science.

[14]  K. Aktories,et al.  Structural basis of the action of glucosyltransferase Lgt1 from Legionella pneumophila. , 2010, Journal of molecular biology.

[15]  H. Tsuge,et al.  Clostridium perfringens Iota-Toxin: Structure and Function , 2009, Toxins.

[16]  M. Heidtman,et al.  Large‐scale identification of Legionella pneumophila Dot/Icm substrates that modulate host cell vesicle trafficking pathways , 2009, Cellular microbiology.

[17]  R. Isberg,et al.  Legionella pneumophila Dot/Icm translocated substrates: a sum of parts. , 2009, Current opinion in microbiology.

[18]  M. Heidtman,et al.  The Legionella pneumophila replication vacuole: making a cosy niche inside host cells , 2009, Nature Reviews Microbiology.

[19]  G J Davies,et al.  Glycosyltransferases: structures, functions, and mechanisms. , 2008, Annual review of biochemistry.

[20]  K. Aktories,et al.  Structure and mode of action of clostridial glucosylating toxins: the ABCD model. , 2008, Trends in microbiology.

[21]  K. Aktories,et al.  Lgt: a Family of Cytotoxic Glucosyltransferases Produced by Legionella pneumophila , 2008, Journal of bacteriology.

[22]  M. Wilm,et al.  Legionella pneumophila glucosyltransferase inhibits host elongation factor 1A , 2006, Proceedings of the National Academy of Sciences.

[23]  K. Aktories,et al.  The actin-ADP-ribosylating Clostridium botulinum C2 toxin. , 2004, Anaerobe.

[24]  M. Molmeret,et al.  Molecular and cell biology of Legionella pneumophila. , 2004, International journal of medical microbiology : IJMM.

[25]  N. Cianciotto,et al.  Purification and Characterization of a UDP-Glucosyltransferase Produced by Legionella pneumophila , 2003, Infection and Immunity.

[26]  Barry S. Fields,et al.  Legionella and Legionnaires' Disease: 25 Years of Investigation , 2002, Clinical Microbiology Reviews.

[27]  R. Kahn,et al.  A Bacterial Guanine Nucleotide Exchange Factor Activates ARF on Legionella Phagosomes , 2002, Science.

[28]  K. Aktories,et al.  Characterization of the Enzymatic Component of the ADP-Ribosyltransferase Toxin CDTa from Clostridium difficile , 2001, Infection and Immunity.

[29]  M. Swanson,et al.  Legionella pneumophila pathogesesis: a fateful journey from amoebae to macrophages. , 2000, Annual review of microbiology.

[30]  W. Merrick,et al.  Site-directed Mutagenesis of Yeast eEF1A , 1998, The Journal of Biological Chemistry.

[31]  W. Merrick,et al.  Site-directed mutagenesis of yeast eefia; viable mutants with altered nucleotide specificity , 1997 .

[32]  R. D. Gietz,et al.  New yeast-Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites. , 1988, Gene.

[33]  K. Aktories,et al.  ADP-ribosylation of skeletal muscle and non-muscle actin by Clostridium perfringens iota toxin. , 1988, European journal of biochemistry.

[34]  J. Vandekerckhove,et al.  Clostridium perfringens iota toxin ADP‐ribosylates skeletal muscle actin in Arg‐177 , 1987, FEBS letters.

[35]  G. Natsoulis,et al.  5-Fluoroorotic acid as a selective agent in yeast molecular genetics. , 1987, Methods in enzymology.

[36]  K. Jakobs,et al.  Botulinum C2 toxin ADP-ribosylates actin , 1986, Nature.

[37]  M. Horwitz,et al.  Legionnaires' disease bacterium (Legionella pneumophila) multiples intracellularly in human monocytes. , 1980, The Journal of clinical investigation.