Characterization of the glucosyltransferase activity of Legionella pneumophila effector SetA
暂无分享,去创建一个
A. Schlosser | K. Aktories | T. Jank | Y. Belyi | Nadezhda Levanova | Marcus Steinemann | Kira E Böhmer | S. Schneider | Kira E. Böhmer
[1] H. Hilbi,et al. Formation of the Legionella-containing vacuole: phosphoinositide conversion, GTPase modulation and ER dynamics. , 2017, International journal of medical microbiology : IJMM.
[2] C. Roy,et al. Autophagy Evasion and Endoplasmic Reticulum Subversion: The Yin and Yang of Legionella Intracellular Infection. , 2016, Annual review of microbiology.
[3] K. Aktories,et al. Roles of Asp179 and Glu270 in ADP-Ribosylation of Actin by Clostridium perfringens Iota Toxin , 2015, PloS one.
[4] R. Isberg,et al. Master manipulators: an update on Legionella pneumophila Icm/Dot translocated substrates and their host targets. , 2014, Future microbiology.
[5] J. Fernández-Recio,et al. Structural Basis for Rab1 De-AMPylation by the Legionella pneumophila Effector SidD , 2013, PLoS pathogens.
[6] R. Goody,et al. Mechanism of Rab1b deactivation by the Legionella pneumophila GAP LepB , 2013, EMBO reports.
[7] K. Aktories,et al. Domain organization of Legionella effector SetA , 2012, Cellular microbiology.
[8] R. Goody,et al. Reversible phosphocholination of Rab proteins by Legionella pneumophila effector proteins , 2012, The EMBO journal.
[9] Zhao‐Qing Luo,et al. Legionella pneumophila regulates the small GTPase Rab1 activity by reversible phosphorylcholination , 2011, Proceedings of the National Academy of Sciences.
[10] J. Galán,et al. Modulation of Rab GTPase function by a protein phosphocholine transferase , 2011, Nature.
[11] A. Yergey,et al. De-AMPylation of the Small GTPase Rab1 by the Pathogen Legionella pneumophila , 2011, Science.
[12] K. Aktories,et al. Effector Glycosyltransferases in Legionella , 2011, Front. Microbio..
[13] R. Goody,et al. The Legionella Effector Protein DrrA AMPylates the Membrane Traffic Regulator Rab1b , 2010, Science.
[14] K. Aktories,et al. Structural basis of the action of glucosyltransferase Lgt1 from Legionella pneumophila. , 2010, Journal of molecular biology.
[15] H. Tsuge,et al. Clostridium perfringens Iota-Toxin: Structure and Function , 2009, Toxins.
[16] M. Heidtman,et al. Large‐scale identification of Legionella pneumophila Dot/Icm substrates that modulate host cell vesicle trafficking pathways , 2009, Cellular microbiology.
[17] R. Isberg,et al. Legionella pneumophila Dot/Icm translocated substrates: a sum of parts. , 2009, Current opinion in microbiology.
[18] M. Heidtman,et al. The Legionella pneumophila replication vacuole: making a cosy niche inside host cells , 2009, Nature Reviews Microbiology.
[19] G J Davies,et al. Glycosyltransferases: structures, functions, and mechanisms. , 2008, Annual review of biochemistry.
[20] K. Aktories,et al. Structure and mode of action of clostridial glucosylating toxins: the ABCD model. , 2008, Trends in microbiology.
[21] K. Aktories,et al. Lgt: a Family of Cytotoxic Glucosyltransferases Produced by Legionella pneumophila , 2008, Journal of bacteriology.
[22] M. Wilm,et al. Legionella pneumophila glucosyltransferase inhibits host elongation factor 1A , 2006, Proceedings of the National Academy of Sciences.
[23] K. Aktories,et al. The actin-ADP-ribosylating Clostridium botulinum C2 toxin. , 2004, Anaerobe.
[24] M. Molmeret,et al. Molecular and cell biology of Legionella pneumophila. , 2004, International journal of medical microbiology : IJMM.
[25] N. Cianciotto,et al. Purification and Characterization of a UDP-Glucosyltransferase Produced by Legionella pneumophila , 2003, Infection and Immunity.
[26] Barry S. Fields,et al. Legionella and Legionnaires' Disease: 25 Years of Investigation , 2002, Clinical Microbiology Reviews.
[27] R. Kahn,et al. A Bacterial Guanine Nucleotide Exchange Factor Activates ARF on Legionella Phagosomes , 2002, Science.
[28] K. Aktories,et al. Characterization of the Enzymatic Component of the ADP-Ribosyltransferase Toxin CDTa from Clostridium difficile , 2001, Infection and Immunity.
[29] M. Swanson,et al. Legionella pneumophila pathogesesis: a fateful journey from amoebae to macrophages. , 2000, Annual review of microbiology.
[30] W. Merrick,et al. Site-directed Mutagenesis of Yeast eEF1A , 1998, The Journal of Biological Chemistry.
[31] W. Merrick,et al. Site-directed mutagenesis of yeast eefia; viable mutants with altered nucleotide specificity , 1997 .
[32] R. D. Gietz,et al. New yeast-Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites. , 1988, Gene.
[33] K. Aktories,et al. ADP-ribosylation of skeletal muscle and non-muscle actin by Clostridium perfringens iota toxin. , 1988, European journal of biochemistry.
[34] J. Vandekerckhove,et al. Clostridium perfringens iota toxin ADP‐ribosylates skeletal muscle actin in Arg‐177 , 1987, FEBS letters.
[35] G. Natsoulis,et al. 5-Fluoroorotic acid as a selective agent in yeast molecular genetics. , 1987, Methods in enzymology.
[36] K. Jakobs,et al. Botulinum C2 toxin ADP-ribosylates actin , 1986, Nature.
[37] M. Horwitz,et al. Legionnaires' disease bacterium (Legionella pneumophila) multiples intracellularly in human monocytes. , 1980, The Journal of clinical investigation.