Robustness of Parameter Estimation Procedures in Multilevel Models When Random Effects are MEP Distributed

In this paper we examine maximum likelihood estimation procedures in multilevel models for two level nesting structures. Usually, for fixed effects and variance components estimation, level-one error terms and random effects are assumed to be normally distributed. Nevertheless, in some circumstances this assumption might not be realistic, especially as concerns random effects. Thus we assume for random effects the family of multivariate exponential power distributions (MEP); subsequently, by means of Monte Carlo simulation procedures, we study robustness of maximum likelihood estimators under normal assumption when, actually, random effects are MEP distributed.

[1]  Cora J. M. Maas,et al.  The influence of violations of assumptions on multilevel parameter estimates and their standard errors , 2004, Comput. Stat. Data Anal..

[2]  M. E. Johnson,et al.  Multivariate Statistical Simulation , 1988 .

[3]  J. Ware,et al.  Random-effects models for longitudinal data. , 1982, Biometrics.

[4]  Roel Bosker,et al.  Multilevel analysis : an introduction to basic and advanced multilevel modeling , 1999 .

[5]  M. A. Gómez–Villegas,et al.  A MATRIX VARIATE GENERALIZATION OF THE POWER EXPONENTIAL FAMILY OF DISTRIBUTIONS , 2002 .

[6]  S. Kotz,et al.  Symmetric Multivariate and Related Distributions , 1989 .

[7]  G. Verbeke,et al.  The effect of misspecifying the random-effects distribution in linear mixed models for longitudinal data , 1997 .

[8]  Douglas A. Wolfe,et al.  Nonparametric Statistical Methods , 1973 .

[9]  V. Carey,et al.  Mixed-Effects Models in S and S-Plus , 2001 .

[10]  I. Kreft Are multilevel techniques necessary?: An overview, including simulation studies , 2005 .

[11]  K. Mardia Measures of multivariate skewness and kurtosis with applications , 1970 .

[12]  Mark E. Johnson Multivariate Statistical Simulation: Johnson/Multivariate , 1987 .

[13]  G. Molenberghs,et al.  Linear Mixed Models for Longitudinal Data , 2001 .

[14]  D. Harville Maximum Likelihood Approaches to Variance Component Estimation and to Related Problems , 1977 .

[15]  Nadia Solaro Random variate generation from Multivariate Exponential Power distribution , 2004 .

[16]  Farid Kianifard,et al.  Models for Repeated Measurements , 2001, Technometrics.