Near-Infrared Synthetic Images of Protostellar Disks and Envelopes

We present a grid of near-infrared (IR) synthetic images of pre-main-sequence stars at different stages of evolution, which we simulate by varying envelope mass, disk radius and mass, and outflow cavity shape. Our aim is to determine how variations in physical properties of young stellar objects (e.g., mass infall rate, disk size) affect their observed colors and morphology, and use this information to highlight observable differences between different evolutionary states. We show that the near-IR colors are a function of envelope mass infall rate and inclination; hence both parameters must be constrained if colors are to be used to infer a source's true evolutionary state. Sources with more opaque envelopes have redder diffuse colors, because the scattered light suffers reddening as it propagates through the envelope. Somewhat counterintuitively, colors are reddest at intermediate inclinations (i ~ 45°-70°) and then become bluer edge-on, where light is ~100% scattered. Thus a source with relatively blue colors could be an evolved source or a younger source oriented edge-on. Importantly, we find that at inclinations where scattered light dominates, it is erroneous to derive extinction AV from observed colors; fully half of all objects will underestimate AV by at least an order of magnitude. We use our models to interpret six protostellar sources in the Taurus-Auriga molecular cloud observed with HST NICMOS. Of the six young stellar objects modeled in this paper, five require an infalling envelope to match the colors and should thus be classified as young embedded sources. The remaining source, Haro 6-5B, is a disk source, having already dispersed its envelope.

[1]  C. Dullemond,et al.  Projection of circumstellar disks on their environments , 2005, astro-ph/0502103.

[2]  R. L. Akeson,et al.  Observations of T Tauri Disks at Sub-AU Radii: Implications for Magnetospheric Accretion and Planet Formation , 2005, astro-ph/0501308.

[3]  Russel J. White,et al.  On the Evolutionary Status of Class I Stars and Herbig-Haro Energy Sources in Taurus-Auriga , 2004, astro-ph/0408244.

[4]  C. Lada,et al.  The structure of brown dwarf circumstellar discs , 2004, astro-ph/0403276.

[5]  J. Bally,et al.  A Disk Shadow around the Young Star ASR 41 in NGC 1333 , 2003, astro-ph/0312256.

[6]  K. Wood,et al.  Two-dimensional Radiative Transfer in Protostellar Envelopes. II. An Evolutionary Sequence , 2003, astro-ph/0309007.

[7]  M. Wolff,et al.  Two-dimensional Radiative Transfer in Protostellar Envelopes. I. Effects of Geometry on Class I Sources , 2003, astro-ph/0303479.

[8]  S. Wolf,et al.  The Circumstellar Disk of the Butterfly Star in Taurus , 2003, astro-ph/0301335.

[9]  L. Hartmann Flows, Fragmentation, and Star Formation. I. Low-Mass Stars in Taurus , 2002, astro-ph/0207216.

[10]  M. Wolff,et al.  The Spectral Energy Distribution of HH 30 IRS: Constraining the Circumstellar Dust Size Distribution , 2001 .

[11]  Scattered Light Models of Protostellar Envelopes: Multiple Outflow Cavities and Misaligned Circumstellar Disks , 2001, astro-ph/0107060.

[12]  M. Tamura,et al.  Millimeter Continuum Image of the Circumstellar Disk around the Young Star Haro 6-5B , 2001 .

[13]  M. Rieke,et al.  High-Resolution Near-Infrared Images and Models of the Circumstellar Disk in HH 30 , 2001, astro-ph/0104066.

[14]  P. Gerakines,et al.  Interstellar Extinction and Polarization in the Taurus Dark Clouds: The Optical Properties of Dust near the Diffuse/Dense Cloud Interface , 2001 .

[15]  L. Hartmann,et al.  Accretion Disks around Young Objects. III. Grain Growth , 2001, astro-ph/0101443.

[16]  A. Whitworth,et al.  An Empirical Model for Protostellar Collapse , 2000, astro-ph/0009325.

[17]  K. Blundell,et al.  A high-resolution radio survey of Class I protostars , 2000 .

[18]  G. Sandell,et al.  Testing Envelope Models of Young Stellar Objects with Submillimeter Continuum and Molecular-Line Observations , 2000, astro-ph/0001021.

[19]  L. Hartmann,et al.  Accretion processes in star formation , 1999 .

[20]  David Koerner,et al.  HUBBLE SPACE TELESCOPE/NICMOS Imaging of Disks and Envelopes around Very Young Stars , 1999, astro-ph/9902101.

[21]  N. Calvet,et al.  Accretion Disks around Young Objects. I. The Detailed Vertical Structure , 1998, astro-ph/9806060.

[22]  B. Whitney,et al.  Optical and Near-Infrared Model Images of the Circumstellar Environments of Classical T Tauri Stars , 1998 .

[23]  B. Whitney,et al.  Near-Infrared Imaging Polarimetry of Embedded Young Stars in the Taurus-Auriga Molecular Cloud , 1997 .

[24]  B. Whitney,et al.  The Bipolar Optical Outflow Associated with PV Cephei , 1997 .

[25]  E. Chiang,et al.  Spectral Energy Distributions of T Tauri Stars with Passive Circumstellar Disks , 1997, astro-ph/9706042.

[26]  Stefano Casertano,et al.  The 1997 HST Calibration Workshop, with a new generation of instruments : proceedings of a workshop held at the Space Telescope Science Institute, Baltimore, Maryland, September 22-24, 1997 , 1997 .

[27]  J. Holtzman,et al.  Hubble Space Telescope Observations of the Disk and Jet of HH 30 , 1996 .

[28]  L. Hartmann,et al.  Pre-Main-Sequence Evolution in the Taurus-Auriga Molecular Cloud , 1995 .

[29]  L. Hartmann,et al.  The embedded young stars in the Taurus-Auriga molecular cloud. I - Models for spectral energy distributions , 1993 .

[30]  L. Hartmann,et al.  The Embedded Young Stars in the Taurus-Auriga Molecular Cloud. II. Models for Scattered Light Images , 1993 .

[31]  P. Martin,et al.  The Size Distribution of Interstellar Dust Particles as Determined from Extinction , 1993 .

[32]  L. Hartmann,et al.  Model scattering envelopes of young stellar objects. II - Infalling envelopes , 1993 .

[33]  L. Hartmann,et al.  Model scattering envelopes of young stellar objects. I - Method and application to circumstellar disks , 1992 .

[34]  S. Kenyon,et al.  On the origin of submillimeter emission from young stars in Taurus-Auriga , 1992 .

[35]  Peter G. Martin,et al.  Interstellar Extinction and Polarization in the Infrared , 1990 .

[36]  Jean-Louis Monin,et al.  Infrared images of protostellar accretion disks: theoretical models , 1990 .

[37]  G. Fuller,et al.  Near-infrared and optical observations of IRAS sources in and near dense cores , 1987 .

[38]  F. Adams,et al.  Star Formation in Molecular Clouds: Observation and Theory , 1987 .

[39]  C. Lada,et al.  Spectral evolution of young stellar objects , 1986 .

[40]  P. Cassen,et al.  The collapse of the cores of slowly rotating isothermal clouds , 1984 .

[41]  P. Cassen,et al.  On the formation of protostellar disks , 1981 .

[42]  J. E. Pringle,et al.  Accretion Discs in Astrophysics , 1981 .

[43]  F. Shu Self-similar collapse of isothermal spheres and star formation. , 1977 .

[44]  R. Ulrich An infall model for the T Tauri phenomenon , 1976 .