Origin of large magnetocapacitance in
K 0.5 Na 0.5
暂无分享,去创建一个
M. Rao | O. Lebedev | W. Prellier | F. Veillon | S. Pradhan | M. Rath
[1] Lang Chen,et al. Ferroelectricity and Ferromagnetism Achieved via Adjusting Dimensionality in BiFeO3/BiMnO3 Superlattices. , 2021, ACS applied materials & interfaces.
[2] M. Rao,et al. Thickness-Dependent Domain Relaxation Dynamics Study in Epitaxial K0.5Na0.5NbO3 Ferroelectric Thin Films. , 2021, ACS applied materials & interfaces.
[3] Prince Sharma,et al. Modeling of magneto-conductivity of bismuth selenide: a topological insulator , 2021, SN Applied Sciences.
[4] S. Abel,et al. Microstructure analysis of epitaxial BaTiO3 thin films on SrTiO3-buffered Si: Strain and dislocation density quantification using HRXRD methods , 2020 .
[5] M. Jouiad,et al. Quantification and mapping of elastic strains in ferroelectric [BaZrO3]xᴧ/[BaTiO3](1-x)ᴧ superlattices , 2020, 2012.03866.
[6] M. Seehra,et al. Effects of Oxygen Modification on the Structural and Magnetic Properties of Highly Epitaxial La0.7Sr0.3MnO3 (LSMO) thin films , 2020, Scientific Reports.
[7] R. Ramesh,et al. Creating emergent phenomena in oxide superlattices , 2019, Nature Reviews Materials.
[8] P. Padhan,et al. Ultrathin Scale Tailoring of Anisotropic Magnetic Coupling and Anomalous Magnetoresistance in SrRuO3-PrMnO3 Superlattices. , 2018, ACS applied materials & interfaces.
[9] P. Padhan,et al. Effect of Symmetry Breaking on Interlayer Exchange Coupling and Electrical Conduction in SrRuO3–PrMnO3 Superlattices , 2018, Advanced Materials Interfaces.
[10] Laijun Liu,et al. Revisiting the temperature‐dependent dielectric permittivity of Ba(Ti1−xZrx)O3 , 2018 .
[11] Han Byul Kang,et al. Magnetic Field Sensing by Exploiting Giant Nonstrain-Mediated Magnetodielectric Response in Epitaxial Composites. , 2018, Nano letters.
[12] Takashi Taniguchi,et al. Unconventional superconductivity in magic-angle graphene superlattices , 2018, Nature.
[13] R. Mane,et al. Sprayed tungsten-doped and undoped bismuth ferrite nanostructured films for reducing and oxidizing gas sensor applications , 2018 .
[14] Jiwon Seo,et al. Origin of insulating weak-ferromagnetic phase in ultra-thin La0.67Sr0.33MnO3 films on SrTiO3 substrate , 2017 .
[15] S. Pantelides,et al. Interface-induced multiferroism by design in complex oxide superlattices , 2017, Proceedings of the National Academy of Sciences.
[16] Chao Yang,et al. Ferromagnetic-Antiferromagnetic Coupling by Distortion of Fe/Mn Oxygen Octahedrons in (BiFeO3 )m (La0.7 Sr0.3 MnO3 )n Superlattices. , 2017, Small.
[17] Jintao Zhang,et al. High Curie temperature and enhanced magnetoelectric properties of the laminated Li0.058(Na0.535K0.48)0.942NbO3/Co0.6 Zn0.4Fe1.7Mn0.3O4 composites , 2017, Scientific Reports.
[18] O. Lebedev,et al. Manganite/Cuprate Superlattice as Artificial Reentrant Spin Glass , 2016 .
[19] J. Li,et al. Characterization of epitaxial LSMO thin films with high Curie temperature prepared on different substrates , 2016 .
[20] Jianguo Zhu,et al. Potassium-sodium niobate lead-free piezoelectric materials: past, present, and future of phase boundaries. , 2015, Chemical reviews.
[21] V. Caignaert,et al. Nanoscale Ordering in Oxygen Deficient Quintuple Perovskite Sm2-εBa3+εFe5O15-δ: Implication for Magnetism and Oxygen Stoichiometry , 2014 .
[22] G. Botton,et al. Atomic scale real-space mapping of holes in YBa2Cu3O6+δ , 2014, Nature Communications.
[23] V. Roddatis,et al. Interfacial magnetic coupling in ultrathin all-manganite La0.7Sr0.3MnO3-TbMnO3 superlattices , 2014 .
[24] D. Mo,et al. Strain effects on magnetic characteristics of ultrathin La0.7Sr0.3MnO3 in epitaxial La0.7Sr0.3MnO3/BaTiO3 superlattices , 2012 .
[25] J. Verbeeck,et al. Site-specific mapping of transition metal oxygen coordination in complex oxides , 2012 .
[26] Xiaoguang Li,et al. Colossal magnetocapacitance effect in BiFeO3/La5/8Ca3/8MnO3 epitaxial films , 2012 .
[27] E. Tsymbal,et al. Electric modulation of magnetization at the BaTiO3/La0.67Sr0.33MnO3 interfaces , 2012 .
[28] H. Hwang,et al. Reentrant insulating state in ultrathin manganite films , 2011 .
[29] F. Gao,et al. Magnetodielectric response in 0.36BiScO3-0.64PbTiO3/La0.7Sr0.3MnO3 thin films and the corresponding model modifications , 2011 .
[30] Yuling Su,et al. Electric-field-induced dielectric response and magnetization in nano–microscale lead-free multiferroic composite , 2011 .
[31] C. Nan,et al. Recent Progress in Multiferroic Magnetoelectric Composites: from Bulk to Thin Films , 2011, Advanced materials.
[32] G. Vincze,et al. Constrained ferroelectric domain orientation in (BiFeO3)m(SrTiO3)n superlattice , 2009, 0912.0358.
[33] Jinrong Cheng,et al. Multiferroic composites in nano–microscale with non-solid solution by Co-ferrite and (K0.5Na0.5)NbO3-based ferroelectric matrix , 2009 .
[34] G. Srinivasan,et al. Magnetodielectric effect in Bi2NiMnO6–La2NiMnO6 superlattices , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.
[35] Zhifeng Ren,et al. Multiferroicity: the coupling between magnetic and polarization orders , 2009, 0908.0662.
[36] S. Banerjee,et al. Colossal enhancement of magnetoresistance in La0.67Sr0.33MnO3 thin films: possible evidence of electronic phase separation , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.
[37] M. Bibes,et al. Multiferroics: towards a magnetoelectric memory. , 2008, Nature materials.
[38] Shan X. Wang,et al. Electric-field control of local ferromagnetism using a magnetoelectric multiferroic. , 2008, Nature materials.
[39] Jingfeng Li,et al. Analysis of crystallographic evolution in (Na,K)NbO3-based lead-free piezoceramics by x-ray diffraction , 2007 .
[40] S. B. Krupanidhi,et al. Realization of biferroic properties in La0.6Sr0.4MnO3∕0.7Pb(Mg1∕3Nb2∕3)O3–0.3(PbTiO3) epitaxial superlattices , 2007, cond-mat/0703807.
[41] J. Scott,et al. Data storage. Multiferroic memories. , 2007, Nature materials.
[42] R. Ramesh,et al. Multiferroics: progress and prospects in thin films. , 2007, Nature materials.
[43] T. Tsurumi,et al. Dielectric Properties of Perovskite-Type Artificial Superlattices , 2007 .
[44] S. B. Krupanidhi,et al. Interface dominated biferroic La0.6Sr0.4MnO3∕0.7Pb(Mg1∕3Nb2∕3)O3–0.3PbTiO3 epitaxial superlattices , 2006, cond-mat/0612647.
[45] M. Gajek,et al. Spintronics with multiferroics , 2006, INTERMAG 2006 - IEEE International Magnetics Conference.
[46] G. Catalán. Magnetocapacitance without magnetoelectric coupling , 2006 .
[47] L. Méchin,et al. Effect of ferroelectric layers on the magnetocapacitance properties of superlattices-based oxide multiferroics , 2005, cond-mat/0511455.
[48] B. Raveau,et al. Magnetocapacitance effect in perovskite-superlattice based multiferroics , 2005, cond-mat/0506305.
[49] N. Boggio,et al. Suppression of the metal-insulator transition temperature in thin La0.7Sr0.3MnO3 films , 2004 .
[50] P. Murugavel,et al. Enhanced magnetoresistance in ferromagnetic Pr0.85Ca0.15MnO3∕ferroelectric Ba0.6Sr0.4TiO3 superlattice films , 2004, cond-mat/0410081.
[51] P. Lecoeur,et al. Colossal magnetoresistive manganite thin films , 2001, cond-mat/0111363.
[52] H. Habermeier,et al. Periodic microtwinning as a possible mechanism for the accommodation of the epitaxial film-substrate mismatch in the La1−xSrxMnO3/SrTiO3 system , 2001 .
[53] G. Catalan,et al. Relaxor features in ferroelectric superlattices: A Maxwell–Wagner approach , 2000 .
[54] H. Habermeier,et al. A study of the domain structure of epitaxial La1-xCaxMnO3 films by high-resolution transmission electron microscopy , 1999 .
[55] Ueda,et al. Ferromagnetism in LaFeO3-LaCrO3 superlattices , 1998, Science.
[56] Alexander L. Efros,et al. Electronic Properties of Doped Semi-conductors , 1984 .