Origin of large magnetocapacitance in K0.5Na0.5

[1]  Lang Chen,et al.  Ferroelectricity and Ferromagnetism Achieved via Adjusting Dimensionality in BiFeO3/BiMnO3 Superlattices. , 2021, ACS applied materials & interfaces.

[2]  M. Rao,et al.  Thickness-Dependent Domain Relaxation Dynamics Study in Epitaxial K0.5Na0.5NbO3 Ferroelectric Thin Films. , 2021, ACS applied materials & interfaces.

[3]  Prince Sharma,et al.  Modeling of magneto-conductivity of bismuth selenide: a topological insulator , 2021, SN Applied Sciences.

[4]  S. Abel,et al.  Microstructure analysis of epitaxial BaTiO3 thin films on SrTiO3-buffered Si: Strain and dislocation density quantification using HRXRD methods , 2020 .

[5]  M. Jouiad,et al.  Quantification and mapping of elastic strains in ferroelectric [BaZrO3]xᴧ/[BaTiO3](1-x)ᴧ superlattices , 2020, 2012.03866.

[6]  M. Seehra,et al.  Effects of Oxygen Modification on the Structural and Magnetic Properties of Highly Epitaxial La0.7Sr0.3MnO3 (LSMO) thin films , 2020, Scientific Reports.

[7]  R. Ramesh,et al.  Creating emergent phenomena in oxide superlattices , 2019, Nature Reviews Materials.

[8]  P. Padhan,et al.  Ultrathin Scale Tailoring of Anisotropic Magnetic Coupling and Anomalous Magnetoresistance in SrRuO3-PrMnO3 Superlattices. , 2018, ACS applied materials & interfaces.

[9]  P. Padhan,et al.  Effect of Symmetry Breaking on Interlayer Exchange Coupling and Electrical Conduction in SrRuO3–PrMnO3 Superlattices , 2018, Advanced Materials Interfaces.

[10]  Laijun Liu,et al.  Revisiting the temperature‐dependent dielectric permittivity of Ba(Ti1−xZrx)O3 , 2018 .

[11]  Han Byul Kang,et al.  Magnetic Field Sensing by Exploiting Giant Nonstrain-Mediated Magnetodielectric Response in Epitaxial Composites. , 2018, Nano letters.

[12]  Takashi Taniguchi,et al.  Unconventional superconductivity in magic-angle graphene superlattices , 2018, Nature.

[13]  R. Mane,et al.  Sprayed tungsten-doped and undoped bismuth ferrite nanostructured films for reducing and oxidizing gas sensor applications , 2018 .

[14]  Jiwon Seo,et al.  Origin of insulating weak-ferromagnetic phase in ultra-thin La0.67Sr0.33MnO3 films on SrTiO3 substrate , 2017 .

[15]  S. Pantelides,et al.  Interface-induced multiferroism by design in complex oxide superlattices , 2017, Proceedings of the National Academy of Sciences.

[16]  Chao Yang,et al.  Ferromagnetic-Antiferromagnetic Coupling by Distortion of Fe/Mn Oxygen Octahedrons in (BiFeO3 )m (La0.7 Sr0.3 MnO3 )n Superlattices. , 2017, Small.

[17]  Jintao Zhang,et al.  High Curie temperature and enhanced magnetoelectric properties of the laminated Li0.058(Na0.535K0.48)0.942NbO3/Co0.6 Zn0.4Fe1.7Mn0.3O4 composites , 2017, Scientific Reports.

[18]  O. Lebedev,et al.  Manganite/Cuprate Superlattice as Artificial Reentrant Spin Glass , 2016 .

[19]  J. Li,et al.  Characterization of epitaxial LSMO thin films with high Curie temperature prepared on different substrates , 2016 .

[20]  Jianguo Zhu,et al.  Potassium-sodium niobate lead-free piezoelectric materials: past, present, and future of phase boundaries. , 2015, Chemical reviews.

[21]  V. Caignaert,et al.  Nanoscale Ordering in Oxygen Deficient Quintuple Perovskite Sm2-εBa3+εFe5O15-δ: Implication for Magnetism and Oxygen Stoichiometry , 2014 .

[22]  G. Botton,et al.  Atomic scale real-space mapping of holes in YBa2Cu3O6+δ , 2014, Nature Communications.

[23]  V. Roddatis,et al.  Interfacial magnetic coupling in ultrathin all-manganite La0.7Sr0.3MnO3-TbMnO3 superlattices , 2014 .

[24]  D. Mo,et al.  Strain effects on magnetic characteristics of ultrathin La0.7Sr0.3MnO3 in epitaxial La0.7Sr0.3MnO3/BaTiO3 superlattices , 2012 .

[25]  J. Verbeeck,et al.  Site-specific mapping of transition metal oxygen coordination in complex oxides , 2012 .

[26]  Xiaoguang Li,et al.  Colossal magnetocapacitance effect in BiFeO3/La5/8Ca3/8MnO3 epitaxial films , 2012 .

[27]  E. Tsymbal,et al.  Electric modulation of magnetization at the BaTiO3/La0.67Sr0.33MnO3 interfaces , 2012 .

[28]  H. Hwang,et al.  Reentrant insulating state in ultrathin manganite films , 2011 .

[29]  F. Gao,et al.  Magnetodielectric response in 0.36BiScO3-0.64PbTiO3/La0.7Sr0.3MnO3 thin films and the corresponding model modifications , 2011 .

[30]  Yuling Su,et al.  Electric-field-induced dielectric response and magnetization in nano–microscale lead-free multiferroic composite , 2011 .

[31]  C. Nan,et al.  Recent Progress in Multiferroic Magnetoelectric Composites: from Bulk to Thin Films , 2011, Advanced materials.

[32]  G. Vincze,et al.  Constrained ferroelectric domain orientation in (BiFeO3)m(SrTiO3)n superlattice , 2009, 0912.0358.

[33]  Jinrong Cheng,et al.  Multiferroic composites in nano–microscale with non-solid solution by Co-ferrite and (K0.5Na0.5)NbO3-based ferroelectric matrix , 2009 .

[34]  G. Srinivasan,et al.  Magnetodielectric effect in Bi2NiMnO6–La2NiMnO6 superlattices , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[35]  Zhifeng Ren,et al.  Multiferroicity: the coupling between magnetic and polarization orders , 2009, 0908.0662.

[36]  S. Banerjee,et al.  Colossal enhancement of magnetoresistance in La0.67Sr0.33MnO3 thin films: possible evidence of electronic phase separation , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[37]  M. Bibes,et al.  Multiferroics: towards a magnetoelectric memory. , 2008, Nature materials.

[38]  Shan X. Wang,et al.  Electric-field control of local ferromagnetism using a magnetoelectric multiferroic. , 2008, Nature materials.

[39]  Jingfeng Li,et al.  Analysis of crystallographic evolution in (Na,K)NbO3-based lead-free piezoceramics by x-ray diffraction , 2007 .

[40]  S. B. Krupanidhi,et al.  Realization of biferroic properties in La0.6Sr0.4MnO3∕0.7Pb(Mg1∕3Nb2∕3)O3–0.3(PbTiO3) epitaxial superlattices , 2007, cond-mat/0703807.

[41]  J. Scott,et al.  Data storage. Multiferroic memories. , 2007, Nature materials.

[42]  R. Ramesh,et al.  Multiferroics: progress and prospects in thin films. , 2007, Nature materials.

[43]  T. Tsurumi,et al.  Dielectric Properties of Perovskite-Type Artificial Superlattices , 2007 .

[44]  S. B. Krupanidhi,et al.  Interface dominated biferroic La0.6Sr0.4MnO3∕0.7Pb(Mg1∕3Nb2∕3)O3–0.3PbTiO3 epitaxial superlattices , 2006, cond-mat/0612647.

[45]  M. Gajek,et al.  Spintronics with multiferroics , 2006, INTERMAG 2006 - IEEE International Magnetics Conference.

[46]  G. Catalán Magnetocapacitance without magnetoelectric coupling , 2006 .

[47]  L. Méchin,et al.  Effect of ferroelectric layers on the magnetocapacitance properties of superlattices-based oxide multiferroics , 2005, cond-mat/0511455.

[48]  B. Raveau,et al.  Magnetocapacitance effect in perovskite-superlattice based multiferroics , 2005, cond-mat/0506305.

[49]  N. Boggio,et al.  Suppression of the metal-insulator transition temperature in thin La0.7Sr0.3MnO3 films , 2004 .

[50]  P. Murugavel,et al.  Enhanced magnetoresistance in ferromagnetic Pr0.85Ca0.15MnO3∕ferroelectric Ba0.6Sr0.4TiO3 superlattice films , 2004, cond-mat/0410081.

[51]  P. Lecoeur,et al.  Colossal magnetoresistive manganite thin films , 2001, cond-mat/0111363.

[52]  H. Habermeier,et al.  Periodic microtwinning as a possible mechanism for the accommodation of the epitaxial film-substrate mismatch in the La1−xSrxMnO3/SrTiO3 system , 2001 .

[53]  G. Catalan,et al.  Relaxor features in ferroelectric superlattices: A Maxwell–Wagner approach , 2000 .

[54]  H. Habermeier,et al.  A study of the domain structure of epitaxial La1-xCaxMnO3 films by high-resolution transmission electron microscopy , 1999 .

[55]  Ueda,et al.  Ferromagnetism in LaFeO3-LaCrO3 superlattices , 1998, Science.

[56]  Alexander L. Efros,et al.  Electronic Properties of Doped Semi-conductors , 1984 .