Local Convergence Rates of Simple Evolutionary Algorithms with Cauchy Mutations

The standard choice for mutating an individual of an evolutionary algorithm with continuous variables is the normal distribution; however other distributions, especially some versions of the multivariate Cauchy distribution, have recently gained increased popularity in practical applications. Here the extent to which Cauchy mutation distributions may aaect the local convergence behavior of evolutionary algorithms is analyzed. The results show that the order of local convergence is identical for Gaussian and spherical Cauchy distributions, whereas nonspherical Cauchy mutations lead to slower local convergence. As a by{product of the analysis some recommendations for the parametrization of the self{adaptive step size control mechanism can be derived.

[1]  H. Scheffé A Useful Convergence Theorem for Probability Distributions , 1947 .

[2]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[3]  Samuel Kotz,et al.  Continuous univariate distributions : distributions in statistics , 1970 .

[4]  Ingo Rechenberg,et al.  Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution , 1973 .

[5]  P. Müller Wahrscheinlichkeitsrechnung und Mathematische Statistik. Lexikon der Stochastik , 1980 .

[6]  Dipl. Ing. Karl Heinz Kellermayer NUMERISCHE OPTIMIERUNG VON COMPUTER-MODELLEN MITTELS DER EVOLUTIONSSTRATEGIE Hans-Paul Schwefel Birkhäuser, Basel and Stuttgart, 1977 370 pages Hardback SF/48 ISBN 3-7643-0876-1 , 1977 .

[7]  H. Teicher,et al.  Probability theory: Independence, interchangeability, martingales , 1978 .

[8]  Markos V. Koutras,et al.  Quadratic forms in spherical random variables: Generalized noncentral x2 distribution , 1984 .

[9]  H. Szu,et al.  Nonconvex optimization by fast simulated annealing , 1987, Proceedings of the IEEE.

[10]  S. Kotz,et al.  Symmetric Multivariate and Related Distributions , 1989 .

[11]  L. Ingber Very fast simulated re-annealing , 1989 .

[12]  J. Bouchaud,et al.  Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications , 1990 .

[13]  Allan Gut,et al.  An intermediate course in probability , 1995 .

[14]  Hans-Paul Schwefel,et al.  Evolution and optimum seeking , 1995, Sixth-generation computer technology series.

[15]  B. H. Lavenda,et al.  Limitations of Boltzmann's principle , 1995 .

[16]  Hans-Georg Beyer,et al.  Toward a Theory of Evolution Strategies: Self-Adaptation , 1995, Evolutionary Computation.

[17]  Cornelia Kappler,et al.  Are Evolutionary Algorithms Improved by Large Mutations? , 1996, PPSN.

[18]  Xin Yao,et al.  Fast Evolutionary Programming , 1996, Evolutionary Programming.

[19]  David B. Fogel,et al.  Multi-operator Evolutionary Programming: A Preliminary Study on Function Optimization , 1997, Evolutionary Programming.

[20]  Xin Yao,et al.  Fast Evolution Strategies , 1997, Evolutionary Programming.

[21]  Thomas Bäck,et al.  Evolutionary computation: Toward a new philosophy of machine intelligence , 1997, Complex..

[22]  D. Fogel Evolutionary algorithms in theory and practice , 1997, Complex..