Review of novelty detection methods

Novelty detection is the identification of new or unknown data or signals that a machine learning system is not aware of during training. Novelty detection methods try to identify outliers that differ from the distribution of ordinary data. This paper is a short review of novelty detection and its methods.

[1]  Teuvo Kohonen,et al.  Self-Organizing Maps , 2010 .

[2]  Bernhard Schölkopf,et al.  Support Vector Method for Novelty Detection , 1999, NIPS.

[3]  J. Anstey,et al.  Discovering Novelty in Time Series Data , 2005 .

[4]  Silvio Romero de Lemos Meira,et al.  Combining MLP and RBF Neural Networks for Novelty Detection in Short Time Series , 2004, MICAI.

[5]  Jean Rouat,et al.  A Novelty Detector Using a Network of Integrate and Fire Neurons , 1997, ICANN.

[6]  Robert J. Schalkoff,et al.  Pattern recognition - statistical, structural and neural approaches , 1991 .

[7]  Sungzoon Cho,et al.  Analysis of Novelty Detection Properties of Autoassociative MLP , 2002 .

[8]  Hoon Sohn,et al.  Novelty Detection Using Auto-Associative Neural Network , 2001, Dynamic Systems and Control.

[9]  D. Martinez,et al.  Neural tree density estimation for novelty detection , 1998, IEEE Trans. Neural Networks.

[10]  F. Hoppensteadt,et al.  Oscillatory model of novelty detection , 2001, Network.

[11]  Zoubin Ghahramani,et al.  Learning Dynamic Bayesian Networks , 1997, Summer School on Neural Networks.

[12]  David A. Clifton,et al.  Aircraft engine health monitoring using density modelling and extreme value statistics , 2009 .

[13]  David A. Clifton,et al.  High-dimensional visualisation for novelty detection , 2008 .

[14]  VARUN CHANDOLA,et al.  Outlier Detection : A Survey , 2007 .

[15]  S. Marsland Novelty Detection in Learning Systems , 2008 .

[16]  Stephen Grossberg,et al.  Adaptive Resonance Theory , 2010, Encyclopedia of Machine Learning.

[17]  Benjamin A. Rowland,et al.  Spatiotemporal Novelty Detection Using Resonance Networks , 2004, FLAIRS.