Traveling with TARDIS. Parameterization and transferability in molecular modeling and simulation

[1]  Claus Beisbart,et al.  Opacity thought through: on the intransparency of computer simulations , 2019, Synthese.

[2]  Frédéric Wieber,et al.  Epistemic issues in computational reproducibility: software as the elephant in the room , 2021, European Journal for Philosophy of Science.

[3]  Frédéric Wieber,et al.  Models, Parameterization, and Software: Epistemic Opacity in Computational Chemistry , 2020, Perspectives on Science.

[4]  Gudrun Gygli,et al.  Simulation Foundry: Automated and F.A.I.R. Molecular Modeling , 2020, J. Chem. Inf. Model..

[5]  Johannes Lenhard,et al.  Calculated Surprises , 2019 .

[6]  Michael Bortz,et al.  Digitalization in Thermodynamics , 2019, Chemie Ingenieur Technik.

[7]  Johannes Lenhard,et al.  Holism, or the Erosion of Modularity: A Methodological Challenge for Validation , 2018, Philosophy of Science.

[8]  Juan M. Durán,et al.  Grounds for Trust: Essential Epistemic Opacity and Computational Reliabilism , 2018, Minds and Machines.

[9]  Hannes H. Loeffler,et al.  Reproducibility of Free Energy Calculations across Different Molecular Simulation Software Packages. , 2018, Journal of chemical theory and computation.

[10]  P. Humphreys Knowledge transfer across scientific disciplines. , 2018, Studies in history and philosophy of science.

[11]  Hans Hasse,et al.  Round Robin Study: Molecular Simulation of Thermodynamic Properties from Models with Internal Degrees of Freedom. , 2017, Journal of chemical theory and computation.

[12]  Margaret Morrison,et al.  Reconstructing Reality: Models, Mathematics, and Simulations , 2015 .

[13]  W. Parker,et al.  Values and uncertainties in climate prediction, revisited. , 2014, Studies in history and philosophy of science.

[14]  Eran Tal,et al.  Old and New Problems in Philosophy of Measurement , 2013 .

[15]  Jameson Cerrosen,et al.  Science in Computational Sciences , 2012 .

[16]  Eric Winsberg,et al.  Holism, entrenchment, and the future of climate model pluralism , 2010 .

[17]  P. N. Edwards A Vast Machine: Computer Models, Climate Data, and the Politics of Global Warming , 2010 .

[18]  E. Maginn,et al.  Historical Perspective and Current Outlook for Molecular Dynamics As a Chemical Engineering Tool , 2010 .

[19]  Paul Humphreys,et al.  The philosophical novelty of computer simulation methods , 2009, Synthese.

[20]  Margaret Morrison,et al.  Models, measurement and computer simulation: the changing face of experimentation , 2009 .

[21]  M. Bradie :Re-Engineering Philosophy for Limited Beings: Piecewise Approximations to Reality , 2008 .

[22]  Richard Edwards,et al.  Extending ourselves , 2003 .

[23]  R. Hughes Models and Representation , 1997, Philosophy of Science.

[24]  I. A. Kieseppä Akaike Information Criterion, Curve-fitting, and the Philosophical Problem of Simplicity , 1997, The British Journal for the Philosophy of Science.

[25]  Martin Neumann,et al.  Consistent calculation of the static and frequency-dependent dielectric constant in computer simulations , 1984 .

[26]  F. H. Adler Cybernetics, or Control and Communication in the Animal and the Machine. , 1949 .

[27]  H. Chatley Cohesion , 1921, Nature.

[28]  Giovanni Ciccotti,et al.  Computer Meets Theoretical Physics , 2020 .

[29]  Hans Hasse,et al.  Boon and Bane: On the Role of Adjustable Parameters in Simulation Models , 2017 .

[30]  Karin Ackermann,et al.  What Engineers Know And How They Know It , 2016 .

[31]  Alexander D. MacKerell,et al.  Molecular mechanics. , 2014, Current pharmaceutical design.

[32]  Gabriele Gramelsberger,et al.  From science to computational sciences : studies in the history of computing and its influence on today's sciences , 2011 .

[33]  Paul Humphreys,et al.  Extending Ourselves: Computational Science, Empiricism, and Scientific Method , 2004 .

[34]  A. Fine,et al.  The Dappled World , 2000 .

[35]  Margaret Morrison,et al.  Models as Mediators , 1999 .

[36]  C. Brooks Computer simulation of liquids , 1989 .