Bio-mimetic mechanisms of natural hierarchical materials: a review.

Natural selection and evolution develop a huge amount of biological materials in different environments (e.g. lotus in water and opuntia in desert). These biological materials possess many inspiring properties, which hint scientists and engineers to find some useful clues to create new materials or update the existing ones. In this review, we highlight some well-studied (e.g. nacre shell) and newly-studied (e.g. turtle shell) natural materials, and summarize their hierarchical structures and mechanisms behind their mechanical properties, from animals to plants. These fascinating mechanisms suggest to researchers to investigate natural materials deeply and broadly, and to design or fabricate new bio-inspired materials to serve our life.

[1]  Huajian Gao,et al.  Materials become insensitive to flaws at nanoscale: Lessons from nature , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[2]  M. Hildebrand,et al.  Application of AFM in understanding biomineral formation in diatoms , 2008, Pflügers Archiv - European Journal of Physiology.

[3]  Nicola Pugno,et al.  In-plane elastic buckling of hierarchical honeycomb materials , 2012 .

[4]  F Vollrath,et al.  Strength and structure of spiders' silks. , 2000, Journal of biotechnology.

[5]  Ado Jorio,et al.  Atomistic simulations of the mechanical properties of ‘super’ carbon nanotubes , 2007, 0707.3961.

[6]  P. Fratzl,et al.  Mineralized collagen fibrils: a mechanical model with a staggered arrangement of mineral particles. , 2000, Biophysical journal.

[7]  Nicola Pugno,et al.  Normal Adhesive Force-Displacement Curves of Living Geckos , 2011 .

[8]  K. Seffen,et al.  International Journal of Solids and Structures , 2015 .

[9]  K. Bertoldi,et al.  Nacre : An orthotropic and bimodular elastic material , 2008 .

[10]  Pier Paolo Delsanto,et al.  The dynamic evolution of the power exponent in a universal growth model of tumors. , 2005, Journal of theoretical biology.

[11]  Markus J. Buehler,et al.  Asymptotic strength limit of hydrogen-bond assemblies in proteins at vanishing pulling rates. , 2008 .

[12]  A. Heuer,et al.  Fracture mechanisms of the Strombus gigas conch shell: II-micromechanics analyses of multiple cracking and large-scale crack bridging , 2004 .

[13]  Stanislav N. Gorb,et al.  The effect of surface roughness on the adhesion of elastic plates with application to biological systems , 2003 .

[14]  A. P. Jackson,et al.  The mechanical design of nacre , 1988, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[15]  Shu-Kun Lin,et al.  Shape and Structure, from Engineering to Nature , 2001, Entropy.

[16]  K. Vecchio,et al.  Mechanical properties and structure of Strombus gigas, Tridacna gigas, and Haliotis rufescens sea shells: A comparative study , 2006 .

[17]  Adrian Bejan,et al.  The tree of convective heat streams: its thermal insulation function and the predicted 3/4-power relation between body heat loss and body size , 2001 .

[18]  Archiv Pharmakologie Pflügers Archiv European Journal of Physiology , 2005, Klinische Wochenschrift.

[19]  N. Pugno,et al.  Investigating the role of hierarchy on the strength of composite materials: evidence of a crucial synergy between hierarchy and material mixing. , 2012, Nanoscale.

[20]  J. Aizenberg,et al.  Skeleton of Euplectella sp.: Structural Hierarchy from the Nanoscale to the Macroscale , 2005, Science.

[21]  Mario Viani,et al.  Molecular mechanistic origin of the toughness of natural adhesives, fibres and composites , 1999, Nature.

[22]  Baohua Ji,et al.  Mechanical properties of nanostructure of biological materials , 2004 .

[23]  G. Plaza,et al.  The effect of spinning forces on spider silk properties , 2005, Journal of Experimental Biology.

[24]  K. Schulgasser,et al.  On the Strength of Herbaceous Vascular Plant Stems , 1997 .

[25]  R. Lakes Materials with structural hierarchy , 1993, Nature.

[26]  Markus J. Buehler,et al.  Hierarchies, multiple energy barriers, and robustness govern the fracture mechanics of α-helical and β-sheet protein domains , 2007, Proceedings of the National Academy of Sciences.

[27]  K. Mita,et al.  Highly repetitive structure and its organization of the silk fibroin gene , 1994, Journal of Molecular Evolution.

[28]  M A Meyers,et al.  Structure and mechanical properties of selected biological materials. , 2008, Journal of the mechanical behavior of biomedical materials.

[29]  M. Meyers,et al.  Structure and mechanical properties of crab exoskeletons. , 2008, Acta biomaterialia.

[30]  D. Raabe,et al.  Hardness and elastic properties of dehydrated cuticle from the lobster Homarus americanus obtained by nanoindentation , 2006 .

[31]  L. Gibson,et al.  Biomimicking of animal quills and plant stems: natural cylindrical shells with foam cores , 1994 .

[32]  Huajian Gao,et al.  Mechanics of robust and releasable adhesion in biology: bottom-up designed hierarchical structures of gecko. , 2006 .

[33]  Bo N. J. Persson,et al.  On the mechanism of adhesion in biological systems , 2003 .

[34]  Markus J. Buehler,et al.  Nonlinear material behaviour of spider silk yields robust webs , 2012, Nature.

[35]  Nicola M. Pugno The theory of multiple peeling , 2009 .

[36]  Yu Tian,et al.  Adhesion and friction in gecko toe attachment and detachment , 2006, Proceedings of the National Academy of Sciences.

[37]  K. Autumn,et al.  Evidence for self-cleaning in gecko setae. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[38]  R. Ballarini,et al.  Structural basis for the fracture toughness of the shell of the conch Strombus gigas , 2000, Nature.

[39]  Markus J. Buehler,et al.  A Constitutive Model of Soft Tissue: From Nanoscale Collagen to Tissue Continuum , 2009, Annals of Biomedical Engineering.

[40]  Dominique P. Pioletti,et al.  Computer Methods in Biomechanics and Biomedical Engineering , 2007 .

[41]  M. Buehler,et al.  Hierarchical simulations for the design of supertough nanofibers inspired by spider silk. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[42]  J. M. A. LENIHAN Physics Education , 1965, Nature.

[43]  S. Kuraku,et al.  Comprehensive survey of carapacial ridge‐specific genes in turtle implies co‐option of some regulatory genes in carapace evolution , 2005, Evolution & development.

[44]  Yi Liu,et al.  Relationships between supercontraction and mechanical properties of spider silk , 2005, Nature materials.

[45]  J. Aizenberg,et al.  Fibre-optical features of a glass sponge , 2003, Nature.

[46]  Horacio D Espinosa,et al.  Dimensional analysis and parametric studies for designing artificial nacre. , 2011, Journal of the mechanical behavior of biomedical materials.

[47]  Joanna Aizenberg,et al.  Biological glass fibers: correlation between optical and structural properties. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[48]  A. Nardi,et al.  Beta‐keratins of turtle shell are glycine‐proline‐tyrosine rich proteins similar to those of crocodilians and birds , 2009, Journal of anatomy.

[49]  Markus J. Buehler,et al.  Theoretical and computational hierarchical nanomechanics of protein materials: Deformation and fracture , 2008 .

[50]  Karl J. Niklas,et al.  Modes of Mechanical Failure of Hollow, Septate Stems , 1998 .

[51]  A. Russell A contribution to the functional analysis of the foot of the Tokay, Gekko gecko (Reptilia: Gekkonidae) , 1975 .

[52]  E. Hill Journal of Theoretical Biology , 1961, Nature.

[53]  Jessica I. Kelz,et al.  Nanoscale control of silica morphology and three-dimensional structure during diatom cell wall formation , 2006 .

[54]  J. Gosline,et al.  The role of proline in the elastic mechanism of hydrated spider silks , 2008, Journal of Experimental Biology.

[55]  J. Aizenberg,et al.  Dynamics and growth patterns of calcareous sponge spicules , 1996, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[56]  S. Lowen The Biophysical Journal , 1960, Nature.

[57]  Lian Li,et al.  Design of superior spider silk: from nanostructure to mechanical properties. , 2006, Biophysical journal.

[58]  M. Meyers,et al.  Interfacial shear strength in abalone nacre. , 2009, Journal of the mechanical behavior of biomedical materials.

[59]  X. Bourrat,et al.  Mechanical properties of the elemental nanocomponents of nacre structure , 2010 .

[60]  Brian N. Cox,et al.  Concepts for bridged cracks in fracture and fatigue , 1994 .

[61]  Leon Mishnaevsky,et al.  3D hierarchical computational model of wood as a cellular material with fibril reinforced, heterogeneous multiple layers , 2009 .

[62]  O. Bagasra,et al.  Proceedings of the National Academy of Sciences , 1914, Science.

[63]  P. Zhou,et al.  Toughness of Spider Silk at High and Low Temperatures , 2005 .

[64]  R. Ritchie,et al.  On the Fracture Toughness of Advanced Materials , 2009 .

[65]  Journal of Molecular Biology , 1959, Nature.

[66]  J. Flynn John,et al.  ESM Appendix B: Tseng ZJ and Flynn JJ. An integrative method for testing form–function linkages and reconstructed evolutionary pathways of masticatory specialization. Journal of the Royal Society Interface , 2015 .

[67]  X. Bourrat,et al.  Dynamics of sheet nacre formation in bivalves. , 2009, Journal of structural biology.

[68]  Robert W. Work,et al.  Dimensions, Birefringences, and Force-Elongation Behavior of Major and Minor Ampullate Silk Fibers from Orb-Web-Spinning Spiders—The Effects of Wetting on these Properties , 1977 .

[69]  Huajian Gao,et al.  Mechanics of hierarchical adhesion structures of geckos , 2005 .

[70]  R. Full,et al.  Adhesive force of a single gecko foot-hair , 2000, Nature.

[71]  M. Horstemeyer,et al.  A study on the structure and mechanical behavior of the Dasypus novemcinctus shell , 2011 .

[72]  M. Buehler,et al.  Evidence of the Most Stretchable Egg Sac Silk Stalk, of the European Spider of the Year Meta menardi , 2012, PloS one.

[73]  J. Gilman,et al.  Nanotechnology , 2001 .

[74]  Sarah L. Sewell,et al.  Materials Science and Engineering C , 2009 .

[75]  Yasuaki Seki,et al.  Biological materials: Structure and mechanical properties , 2008 .

[76]  Lorna J. Gibson,et al.  Elastic buckling of cylindrical shells with elastic cores—I. Analysis , 1995 .

[77]  Karl J. Niklas,et al.  Responses of Hollow, Septate Stems to Vibrations: Biomechanical Evidence that Nodes Can Act Mechanically as Spring-like Joints , 1997 .

[78]  James H. Brown,et al.  A General Model for the Origin of Allometric Scaling Laws in Biology , 1997, Science.

[79]  N. Pugno,et al.  Allometric scaling and biomechanical behavior of the bone tissue: an experimental intraspecific investigation. , 2007, Bone.

[80]  D. S. Dugdale Yielding of steel sheets containing slits , 1960 .

[81]  Yuh J. Chao,et al.  Nanoscale Structural and Mechanical Characterization of a Natural Nanocomposite Material: The Shell of Red Abalone , 2004 .

[82]  Bruce P. Lee,et al.  A reversible wet/dry adhesive inspired by mussels and geckos , 2007, Nature.

[83]  R. Lewis,et al.  Spider minor ampullate silk proteins contain new repetitive sequences and highly conserved non‐silk‐like “spacer regions” , 1998, Protein science : a publication of the Protein Society.

[84]  Nicola Pugno,et al.  Spatulate structures in biological fibrillar adhesion , 2010 .

[85]  N. Kröger,et al.  Silica formation in diatoms: the function of long-chain polyamines and silaffins , 2004 .

[86]  John D. Currey,et al.  Mechanical properties of mother of pearl in tension , 1977, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[87]  J. Aizenberg,et al.  Morphogenesis of calcitic sponge spicules: a role for specialized proteins interacting with growing crystals , 1995, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[88]  R. Foelix,et al.  The biology of spiders. , 1987 .

[89]  Mechanics of hierarchical 3-D nanofoams , 2012 .

[90]  R. Singer,et al.  Advanced engineering materials , 2015 .

[91]  B. Hall,et al.  Osteoderm morphology and development in the nine‐banded armadillo, Dasypus novemcinctus (Mammalia, Xenarthra, Cingulata) , 2006, Journal of morphology.

[92]  D. Raabe,et al.  Preferred crystallographic texture of alpha-chitin as a microscopic and macroscopic design principle of the exoskeleton of the lobster Homarus americanus. , 2007, Acta biomaterialia.

[93]  Dusan Losic,et al.  Atomic force microscopy (AFM) characterisation of the porous silica nanostructure of two centric diatoms , 2007 .

[94]  Jianxiang Wang,et al.  Hierarchical, multilayered cell walls reinforced by recycled silk cocoons enhance the structural integrity of honeybee combs , 2010, Proceedings of the National Academy of Sciences.

[95]  J. Herskowitz,et al.  Proceedings of the National Academy of Sciences, USA , 1996, Current Biology.

[96]  A K Soh,et al.  Structural and mechanical properties of the organic matrix layers of nacre. , 2003, Biomaterials.

[97]  Markus J Buehler,et al.  Nanoconfinement of spider silk fibrils begets superior strength, extensibility, and toughness. , 2011, Nano letters.

[98]  Samuel Venner,et al.  Spider webs designed for rare but life-saving catches , 2005, Proceedings of the Royal Society B: Biological Sciences.

[99]  Dierk Raabe,et al.  The crustacean exoskeleton as an example of a structurally and mechanically graded biological nanocomposite material , 2005 .

[100]  G. H. The Journal of Morphology , 1889, Nature.

[101]  N. Pugno,et al.  Modeling the elastic anisotropy of woven hierarchical tissues , 2011 .

[102]  R. Cahn,et al.  Materials science and engineering , 2023, Nature.

[103]  J. Linnell,et al.  Zoology , 2010, The Quarterly Review of Biology.

[104]  R. Ritchie,et al.  Micromechanical models to guide the development of synthetic 'brick and mortar' composites , 2012 .

[105]  Stephan Diekmann Reviews in molecular biotechnology , 2000 .

[106]  R. Lewis,et al.  Evidence from flagelliform silk cDNA for the structural basis of elasticity and modular nature of spider silks. , 1998, Journal of molecular biology.

[107]  Pier Paolo Delsanto,et al.  Scaling laws and fractality in the framework of a phenomenological approach , 2009 .

[108]  M. Buehler,et al.  Flaw tolerance of nuclear intermediate filament lamina under extreme mechanical deformation. , 2011, ACS nano.

[109]  S. D. Papka,et al.  Experiments and full-scale numerical simulations of in-plane crushing of a honeycomb , 1998 .

[110]  R. Full,et al.  Evidence for van der Waals adhesion in gecko setae , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[111]  F. Young Biochemistry , 1955, The Indian Medical Gazette.

[112]  M. Buehler,et al.  Hierarchical Silica Nanostructures Inspired by Diatom Algae Yield Superior Deformability, Toughness, and Strength , 2011 .

[113]  D'arcy W. Thompson,et al.  On Growth and Form , 1917, Nature.

[114]  Bharat Bhushan,et al.  Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and drag reduction , 2011 .

[115]  K. Niklas Relative Resistance of Hollow, Septate Internodes to Twisting and Bending , 1997 .

[116]  Federico Bosia,et al.  Hierarchical fiber bundle model to investigate the complex architectures of biological materials. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[117]  N. Pugno,et al.  In-plane elastic properties of hierarchical nano-honeycombs: The role of the surface effect , 2013 .

[118]  G. K. Haritos,et al.  Biomimetics: Advancing Man-Made Materials Through Guidance From Nature , 1991 .

[119]  T. Blackledge,et al.  Evolution of supercontraction in spider silk: structure–function relationship from tarantulas to orb-weavers , 2010, Journal of Experimental Biology.

[120]  Xiaodong Li Nanoscale structural and mechanical characterization of natural nanocomposites: Seashells , 2007 .

[121]  Yildiz Bayazitoglu,et al.  International Journal of Heat and Mass Transfer , 2013 .

[122]  Dierk Raabe,et al.  Discovery of a honeycomb structure in the twisted plywood patterns of fibrous biological nanocomposite tissue , 2005 .

[123]  N. Pugno,et al.  Competition between in-plane buckling and bending collapses in nanohoneycombs , 2012 .

[124]  Horacio Dante Espinosa,et al.  An elasto-viscoplastic interface model for investigating the constitutive behavior of nacre , 2007 .

[125]  Farshid Guilak,et al.  A biomimetic three-dimensional woven composite scaffold for functional tissue engineering of cartilage. , 2007, Nature materials.

[126]  F. Barthelat,et al.  On the mechanics of mother-of-pearl: a key feature in the material hierarchical structure , 2007 .

[127]  M. Y. Dabney,et al.  Southern Medical Journal , 1927 .

[128]  Alberto Redaelli,et al.  Molecular and nanostructural mechanisms of deformation, strength and toughness of spider silk fibrils. , 2010, Nano letters.

[129]  Ingi Agnarsson,et al.  Spider silk as a novel high performance biomimetic muscle driven by humidity , 2009, Journal of Experimental Biology.

[130]  Michael F. Ashby,et al.  The mechanical efficiency of natural materials , 2004 .

[131]  Mark Hildebrand,et al.  Dynamics of silica cell wall morphogenesis in the diatom Cyclotella cryptica: substructure formation and the role of microfilaments. , 2010, Journal of structural biology.

[132]  C. A. Condat,et al.  A multilevel approach to cancer growth modeling. , 2008, Journal of theoretical biology.

[133]  D. Raabe,et al.  Experimental investigation of the elastic-plastic deformation of mineralized lobster cuticle by digital image correlation. , 2006, Journal of structural biology.

[134]  Yang-Tse Cheng,et al.  Effects of micro- and nano-structures on the self-cleaning behaviour of lotus leaves , 2006 .

[135]  R. Ritchie Mechanisms of fatigue crack propagation in metals, ceramics and composites: Role of crack tip shielding☆ , 1988 .

[136]  T. Scheibel,et al.  Novel Assembly Properties of Recombinant Spider Dragline Silk Proteins , 2004, Current Biology.

[137]  K. Harmoney,et al.  Mechanical Properties and Anatomical Components of Stems of 42 Grass Species , 2007 .

[138]  Nicola Pugno,et al.  Mimicking nacre with super-nanotubes for producing optimized super-composites , 2006 .

[139]  X. Bourrat,et al.  Sheet nacre growth mechanism: a Voronoi model. , 2005, Journal of structural biology.

[140]  C. K. Job,et al.  Seasonal and spatial trends in the detectability of leprosy in wild armadillos , 1991, Epidemiology and Infection.

[141]  Zhiping Xu,et al.  Nanoconfinement Controls Stiffness, Strength and Mechanical Toughness of Β-sheet Crystals in Silk , 2010 .

[142]  Yang Li,et al.  Structural Origin of the Strain‐Hardening of Spider Silk , 2011 .

[143]  Elena Pasternak,et al.  Topological interlocking as a material design concept , 2011 .

[144]  Marc André Meyers,et al.  Mechanical strength of abalone nacre: role of the soft organic layer. , 2008, Journal of the mechanical behavior of biomedical materials.

[145]  N. Pugno,et al.  A Parametrical Analysis on the Elastic Anisotropy of Woven Hierarchical Tissues , 2011 .

[146]  Nicola Pugno,et al.  Optimal Angles for Maximal Adhesion in Living Tokay Geckos , 2012 .

[147]  Victor Smetacek,et al.  Architecture and material properties of diatom shells provide effective mechanical protection , 2003, Nature.

[148]  Sean P Kelly,et al.  Damping capacity is evolutionarily conserved in the radial silk of orb-weaving spiders. , 2011, Zoology.

[149]  Peter Fratzl,et al.  Biomimetic materials research: what can we really learn from nature's structural materials? , 2007, Journal of The Royal Society Interface.

[150]  M. Ashby,et al.  Cellular solids: Structure & properties , 1988 .

[151]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[152]  Bernd Markert,et al.  Silk fiber mechanics from multiscale force distribution analysis. , 2011, Biophysical journal.

[153]  Fritz Vollrath,et al.  Biopolymers: Shape memory in spider draglines , 2006, Nature.

[154]  A. Keshri,et al.  Multi-scale hierarchy of Chelydra serpentina: microstructure and mechanical properties of turtle shell. , 2011, Journal of the mechanical behavior of biomedical materials.

[155]  J. Gosline,et al.  The mechanical design of spider silks: from fibroin sequence to mechanical function. , 1999, The Journal of experimental biology.

[156]  J. Aizenberg,et al.  A kinetic model of the transformation of a micropatterned amorphous precursor into a porous single crystal. , 2010, Acta biomaterialia.

[157]  F Vollrath,et al.  Predicting the mechanical properties of spider silk as a model nanostructured polymer , 2005, The European physical journal. E, Soft matter.

[158]  S. D. Papka,et al.  In-plane compressive response and crushing of honeycomb , 1994 .

[159]  L. Gibson Biomechanics of cellular solids. , 2005, Journal of biomechanics.

[160]  M. Buehler,et al.  Nanomechanics of biologically inspired helical silica nanostructures , 2010 .

[161]  M. Buehler,et al.  Molecular mechanics of dihydroxyphenylalanine at a silica interface , 2012 .

[162]  N. Pugno,et al.  Superhydrophobic Polystyrene by Direct Copy of a Lotus Leaf , 2011 .

[163]  Chen Xu,et al.  Materials Science and Engineering R , 2010 .

[164]  Gautam R. Desiraju,et al.  Current Opinion in Solid State & Materials Science , 2001 .

[165]  J. Currey Mechanical properties and adaptations of some less familiar bony tissues. , 2010, Journal of the mechanical behavior of biomedical materials.

[166]  Haijun Zhou,et al.  Hierarchical chain model of spider capture silk elasticity. , 2004, Physical review letters.

[167]  David Taylor Welcome to the journal of the mechanical behavior of biomedical materials. , 2008, Journal of the mechanical behavior of biomedical materials.

[168]  Hongbo Zeng,et al.  Strong reversible Fe3+-mediated bridging between dopa-containing protein films in water , 2010, Proceedings of the National Academy of Sciences.

[169]  J. Aizenberg,et al.  Sonication-assisted synthesis of large, high-quality mercury thiolate single crystals directly from liquid mercury. , 2010, Journal of the American Chemical Society.

[170]  D. Raabe,et al.  Influence of Structural Principles on the Mechanics of a Biological Fiber‐Based Composite Material with Hierarchical Organization: The Exoskeleton of the Lobster Homarus americanus , 2009 .

[171]  Delphine Gourdon,et al.  Adhesion mechanisms of the mussel foot proteins mfp-1 and mfp-3 , 2007, Proceedings of the National Academy of Sciences.

[172]  Joanna Aizenberg,et al.  Hierarchical assembly of the siliceous skeletal lattice of the hexactinellid sponge Euplectella aspergillum. , 2007, Journal of structural biology.

[173]  October I Physical Review Letters , 2022 .

[174]  A. Müller Journal of Physics Condensed Matter , 2008 .

[175]  Peter Fratzl,et al.  Iron-Clad Fibers: A Metal-Based Biological Strategy for Hard Flexible Coatings , 2010, Science.

[176]  N. Pugno Graded cross-links for stronger nanomaterials , 2010 .

[177]  Sindy K. Y. Tang,et al.  Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity , 2011, Nature.

[178]  Nicola Pugno,et al.  Numerical simulations demonstrate that the double tapering of the spatualae of lizards and insects maximize both detachment resistance and stability , 2011 .

[179]  Huajian Gao,et al.  Shape insensitive optimal adhesion of nanoscale fibrillar structures. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[180]  Stelios Kyriakides,et al.  In-plane crushing of a polycarbonate honeycomb , 1998 .

[181]  G. Stucky,et al.  Metals and the integrity of a biological coating: the cuticle of mussel byssus. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[182]  Paul K. Hansma,et al.  Does Abalone Nacre Form by Heteroepitaxial Nucleation or by Growth through Mineral Bridges , 1997 .

[183]  M J Doktycz,et al.  Diverse and conserved nano‐ and mesoscale structures of diatom silica revealed by atomic force microscopy , 2009, Journal of microscopy.

[184]  Baohua Ji,et al.  Cracking and adhesion at small scales: atomistic and continuum studies of flaw tolerant nanostructures , 2006, Modelling and Simulation in Materials Science and Engineering.

[185]  M. Buehler,et al.  Superductile, Wavy Silica Nanostructures Inspired by Diatom Algae , 2011 .

[186]  Burhanuddin Yeop Majlis,et al.  Exploring the Innovational Potential of Biomimetics for Novel 3D MEMS , 2009 .

[187]  Paul K. Hansma,et al.  Plasticity and toughness in bone , 2009 .

[188]  Ralph Spolenak,et al.  Evidence for capillarity contributions to gecko adhesion from single spatula nanomechanical measurements. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[189]  M. Cutkosky,et al.  Frictional adhesion: a new angle on gecko attachment , 2006, Journal of Experimental Biology.

[190]  Adrian Bejan,et al.  The constructal law of organization in nature: tree-shaped flows and body size , 2005, Journal of Experimental Biology.

[191]  Markus J Buehler,et al.  Nanomechanical strength mechanisms of hierarchical biological materials and tissues , 2008, Computer methods in biomechanics and biomedical engineering.

[192]  K. Autumn,et al.  Mechanisms of Adhesion in Geckos1 , 2002, Integrative and comparative biology.

[193]  Nicola M. Pugno,et al.  Observation of optimal gecko's adhesion on nanorough surfaces , 2008, Biosyst..

[194]  Karin Hofstetter,et al.  Hierarchical modelling of microstructural effects on mechanical properties of wood. A review COST Action E35 2004–2008: Wood machining – micromechanics and fracture , 2009 .

[195]  David J. Mooney,et al.  Inspiration and application in the evolution of biomaterials , 2009, Nature.

[196]  Huajian Gao,et al.  Hierarchical modelling of attachment and detachment mechanisms of gecko toe adhesion , 2008, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[197]  Xiaodong Li,et al.  Deformation Strengthening of Biopolymer in Nacre , 2011 .

[198]  D. Raabe,et al.  The exoskeleton of the lobster Homarus americanus as an example of a smart anisotropic biological material. , 2007, Acta biomaterialia.

[199]  H. Hansma,et al.  Molecular nanosprings in spider capture-silk threads , 2003, Nature materials.

[200]  J. Thomson,et al.  Philosophical Magazine , 1945, Nature.

[201]  J. Herbert Waite,et al.  Mussel Adhesion: Finding the Tricks Worth Mimicking , 2005 .

[202]  A. P. Jackson,et al.  A physical model of nacre , 1989 .

[203]  Current Biology , 2012, Current Biology.

[204]  Markus J. Buehler,et al.  Hierarchical Structure Controls Nanomechanical Properties of Vimentin Intermediate Filaments , 2009, PloS one.

[205]  K. Kendall,et al.  A simple way to make tough ceramics , 1990, Nature.

[206]  Manfred Euler,et al.  Hooke’s law and material science projects: exploring energy and entropy springs , 2008 .

[207]  M. Horstemeyer,et al.  A study on the structure and mechanical behavior of the Terrapene carolina carapace: A pathway to design bio-inspired synthetic composites , 2009 .

[208]  Journal of Chemical Physics , 1932, Nature.

[209]  Pier Paolo Delsanto,et al.  Phenomenological approach to mechanical damage growth analysis. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[210]  M. Buehler,et al.  Mechanics of Nano-Honeycomb Silica Structures: Size-Dependent Brittle-to-Ductile Transition , 2011 .

[211]  Hongbo Zeng,et al.  Protein- and Metal-dependent Interactions of a Prominent Protein in Mussel Adhesive Plaques* , 2010, The Journal of Biological Chemistry.

[212]  Richard Weinkamer,et al.  Nature’s hierarchical materials , 2007 .

[213]  A. Geim,et al.  Microfabricated adhesive mimicking gecko foot-hair , 2003, Nature materials.

[214]  R. Truman Armadillos as a source of infection for leprosy. , 2008, Southern medical journal.

[215]  Owen Y Loh,et al.  Tablet-level origin of toughening in abalone shells and translation to synthetic composite materials. , 2011, Nature communications.

[216]  Markus J. Buehler,et al.  Nanostructure and molecular mechanics of spider dragline silk protein assemblies , 2010, Journal of The Royal Society Interface.

[217]  S. Nikolov,et al.  Revealing the Design Principles of High‐Performance Biological Composites Using Ab initio and Multiscale Simulations: The Example of Lobster Cuticle , 2010, Advanced materials.

[218]  Nicola Pugno,et al.  Towards a Spiderman suit: large invisible cables and self-cleaning releasable superadhesive materials , 2007 .

[219]  Markus J Buehler,et al.  Natural stiffening increases flaw tolerance of biological fibers. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[220]  Haimin Yao,et al.  Journal of the Mechanics and Physics of Solids , 2014 .

[221]  R. Ritchie,et al.  Scaling of strength and ductility in bioinspired brick and mortar composites , 2010 .

[222]  Peter Fratzl,et al.  Mechanical Function of a Complex Three‐Dimensional Suture Joining the Bony Elements in the Shell of the Red‐Eared Slider Turtle , 2009 .

[223]  David L. Kaplan,et al.  Mollusc shell structures: novel design strategies for synthetic materials , 1998 .

[224]  H. J. AXON,et al.  Progress in Materials Science , 1963, Nature.

[225]  Henrik Birkedal,et al.  pH-induced metal-ligand cross-links inspired by mussel yield self-healing polymer networks with near-covalent elastic moduli , 2011, Proceedings of the National Academy of Sciences.

[226]  D. Raabe,et al.  Influence of microstructure on deformation anisotropy of mineralized cuticle from the lobster Homarus americanus. , 2008, Journal of structural biology.

[227]  M. Ashby,et al.  The structural efficiency of orthotropic stalks, stems and tubes , 2007 .

[228]  Joanna McKittrick,et al.  Armadillo armor: mechanical testing and micro-structural evaluation. , 2011, Journal of the mechanical behavior of biomedical materials.

[229]  Zhigang Suo,et al.  Deformation mechanisms in nacre , 2001 .

[230]  R. Full,et al.  Dynamics of geckos running vertically , 2006, Journal of Experimental Biology.

[231]  B. Ji A study of the interface strength between protein and mineral in biological materials. , 2008, Journal of biomechanics.

[232]  Baoming Gong,et al.  Molecular dynamics study on size-dependent elastic properties of silicon nanoplates , 2012 .

[233]  A. Carpinteri,et al.  Multiscale stochastic simulations for tensile testing of nanotube-based macroscopic cables. , 2008, Small.

[234]  Francois Barthelat,et al.  Merger of structure and material in nacre and bone - Perspectives on de novo biomimetic materials , 2009 .

[235]  ScienceDirect,et al.  Composites science and technology , 1985 .

[236]  J. Carmeliet,et al.  Computational up-scaling of anisotropic swelling and mechanical behavior of hierarchical cellular material , 2012, 1509.01388.

[237]  Boris E. Burakov,et al.  Advanced Materials , 2019, Springer Proceedings in Physics.

[238]  S. Gilbert,et al.  Morphogenesis of the turtle shell: the development of a novel structure in tetrapod evolution , 2001, Evolution & development.

[239]  Dierk Raabe,et al.  Microstructure and crystallographic texture of the chitin-protein network in the biological composite material of the exoskeleton of the lobster Homarus americanus , 2006 .