Fault detection of rolling bearing based on FFT and classification

[1]  Bin Fang,et al.  Automated classfication of particles in urinary sediment , 2009, 2009 International Conference on Wavelet Analysis and Pattern Recognition.

[2]  Lin Lin,et al.  Multidimensional feature extraction based on vibration signals of rolling bearings , 2013, 2013 25th Chinese Control and Decision Conference (CCDC).

[3]  W. Härdle,et al.  Applied Multivariate Statistical Analysis , 2003 .

[4]  S. A. McInerny,et al.  Basic vibration signal processing for bearing fault detection , 2003, IEEE Trans. Educ..

[5]  Peter W. Tse,et al.  Wavelet Analysis and Envelope Detection For Rolling Element Bearing Fault Diagnosis—Their Effectiveness and Flexibilities , 2001 .

[6]  Shoji Noguchi,et al.  Study on Vibration Frequency for Ball Bearing Damaged by Electrical Pitting , 2013 .

[7]  Robert X. Gao,et al.  Hilbert–Huang Transform-Based Vibration Signal Analysis for Machine Health Monitoring , 2006, IEEE Transactions on Instrumentation and Measurement.

[8]  Thomas Parisini,et al.  Identification of neural dynamic models for fault detection and isolation: the case of a real sugar evaporation process , 2005 .

[9]  Ridvan Saraçoglu,et al.  Hidden Markov model-based classification of heart valve disease with PCA for dimension reduction , 2012, Eng. Appl. Artif. Intell..

[10]  Konstantinos C. Gryllias,et al.  A Support Vector Machine approach based on physical model training for rolling element bearing fault detection in industrial environments , 2012, Eng. Appl. Artif. Intell..

[11]  E. O. Brigham,et al.  The Fast Fourier Transform , 1967, IEEE Transactions on Systems, Man, and Cybernetics.

[12]  Hiroki Fujiwara,et al.  Tolerance Design of Logarithmic Roller Profiles in Cylindrical Roller Bearings , 2010 .

[13]  Hung T. Nguyen,et al.  Data Clustering Using Variants of Rapid Centroid Estimation , 2014, IEEE Transactions on Evolutionary Computation.