A High-Transmission, Multiple Antireflective Surface Inspired from Bilayer 3D Ultrafine Hierarchical Structures in Butterfly Wing Scales.

A high-transmission, multiple antireflective surface inspired by bilayer 3D ultrafine hierarchical structures in butterfly wing scales is fabricated on a glass substrate using wet chemical biomimetic fabrication. Interestingly, the biomimetic antireflective surface exhibits excellent antireflective properties and high transmission, which provides better characteristics than the butterfly wings and can significantly reduce reflection without losing transparency. These findings offer a new path for generating nanostructured antireflectors with high transmission properties.

[1]  Peng Jiang,et al.  Templated fabrication of large area subwavelength antireflection gratings on silicon , 2007 .

[2]  Willem L. Vos,et al.  Broad‐band and Omnidirectional Antireflection Coatings Based on Semiconductor Nanorods , 2009 .

[3]  Shichao Niu,et al.  Light trapping structures in wing scales of butterfly Trogonoptera brookiana. , 2012, Nanoscale.

[4]  Joachim P Spatz,et al.  Biomimetic interfaces for high-performance optics in the deep-UV light range. , 2008, Nano letters.

[5]  J. Baumberg,et al.  Spherical micromirrors from templated self-assembly: Polarization rotation on the micron scale , 2003 .

[6]  Chang Sheh Lit,et al.  Fabrication of NiO Nanowall Electrodes for High Performance Lithium Ion Battery , 2008 .

[7]  Heon Lee,et al.  Enhanced performance of solar cells with anti-reflection layer fabricated by nano-imprint lithography , 2011 .

[8]  J. Yu,et al.  Bioinspired parabola subwavelength structures for improved broadband antireflection. , 2010, Small.

[9]  Thad Druffel,et al.  Mechanical comparison of a polymer nanocomposite to a ceramic thin-film anti-reflective filter , 2006, Nanotechnology.

[10]  S. Gwo,et al.  Gallium nitride nanorod arrays as low-refractive-index transparent media in the entire visible spectral region. , 2008, Optics express.

[11]  Zhongfan Liu,et al.  The fabrication of subwavelength anti-reflective nanostructures using a bio-template , 2008, Nanotechnology.

[12]  M. Geissler,et al.  Patterning: Principles and Some New Developments , 2004 .

[13]  M. Hutley,et al.  Reduction of Lens Reflexion by the “Moth Eye” Principle , 1973, Nature.

[14]  K. H. Chen,et al.  Morphology control of silicon nanotips fabricated by electron cyclotron resonance plasma etching , 2006 .

[15]  Heping Dong,et al.  Biomimetic Surfaces for High‐Performance Optics , 2009 .

[16]  R. Sambles,et al.  Sculpted-multilayer optical effects in two species of Papilio butterfly. , 2001, Applied optics.

[17]  Di Zhang,et al.  Art of blackness in butterfly wings as natural solar collector , 2011 .

[18]  J. Yu,et al.  Biomimetic parabola-shaped AZO subwavelength grating structures for efficient antireflection of Si-based solar cells , 2011 .

[19]  Stuart A. Boden,et al.  Tunable reflection minima of nanostructured antireflective surfaces , 2008 .

[20]  Jong Kyu Kim,et al.  Very low-refractive-index optical thin films consisting of an array of SiO2 nanorods. , 2006, Optics letters.

[21]  Srikanth Ravipati,et al.  Broadband and wide angle antireflection of sub-20 nm GaAs nanograss , 2012 .

[22]  Yoshiaki Kanamori,et al.  Antireflective subwavelength structures on crystalline Si fabricated using directly formed anodic porous alumina masks , 2006 .

[23]  Bai Yang,et al.  Bioinspired silica surfaces with near-infrared improved transmittance and superhydrophobicity by colloidal lithography. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[24]  Xin Zhao,et al.  The role of nanomaterials in redox-based supercapacitors for next generation energy storage devices. , 2011, Nanoscale.

[25]  Zongfu Yu,et al.  Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays. , 2009, Nano letters.

[26]  M. Rubner,et al.  Reversibly erasable nanoporous anti-reflection coatings from polyelectrolyte multilayers , 2002, Nature materials.

[27]  Bai Yang,et al.  Antireflective surfaces based on biomimetic nanopillared arrays , 2010 .

[28]  Seeram Ramakrishna,et al.  Porous SiO2 anti-reflective coatings on large-area substrates by electrospinning and their application to solar modules , 2013 .

[29]  Surojit Chattopadhyay,et al.  Nanotips: Growth, Model, and Applications , 2006 .

[30]  J. Yu,et al.  Closely packed and aspect-ratio-controlled antireflection subwavelength gratings on GaAs using a lenslike shape transfer. , 2009, Optics letters.

[31]  Radislav A. Potyrailo,et al.  Morpho butterfly wing scales demonstrate highly selective vapour response , 2007 .

[32]  Seeram Ramakrishna,et al.  Anti-reflective coatings: A critical, in-depth review , 2011 .

[33]  Di Zhang,et al.  Inspiration from butterfly and moth wing scales: Characterization, modeling, and fabrication , 2015 .

[34]  Zhiyi Lu,et al.  Beta-phased Ni(OH)2 nanowall film with reversible capacitance higher than theoretical Faradic capacitance. , 2011, Chemical communications.

[35]  Jinguang Cai,et al.  Self-cleaning, broadband and quasi-omnidirectional antireflective structures based on mesocrystalline rutile TiO2 nanorod arrays , 2012 .

[36]  Wei Li,et al.  Preparation of bionic nanostructures from butterfly wings and their low reflectivity of ultraviolet , 2013 .

[37]  J. Baumberg,et al.  Mimicking the colourful wing scale structure of the Papilio blumei butterfly. , 2010, Nature nanotechnology.

[38]  Zongfu Yu,et al.  Nanodome solar cells with efficient light management and self-cleaning. , 2010, Nano letters.

[39]  Alain Fave,et al.  Pyramidal texturing of silicon solar cell with TMAH chemical anisotropic etching , 2006 .

[40]  Zheng Cui,et al.  Free-standing SU-8 subwavelength gratings fabricated by UV curing imprint , 2008 .

[41]  Hua Zhang,et al.  Cobalt Oxide Nanowall Arrays on Reduced Graphene Oxide Sheets with Controlled Phase, Grain Size, and Porosity for Li-Ion Battery Electrodes , 2011 .

[42]  Yongmei Zheng,et al.  A study of the anti-reflection efficiency of natural nano-arrays of varying sizes , 2011, Bioinspiration & biomimetics.

[43]  D. Stavenga,et al.  Light on the moth-eye corneal nipple array of butterflies , 2006, Proceedings of the Royal Society B: Biological Sciences.

[44]  Yi Cui,et al.  Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings. , 2012, Nano letters.

[45]  L. J. Guo,et al.  Nanoimprint Lithography: Methods and Material Requirements , 2007 .

[46]  Teresa Monteiro,et al.  Morphological and optical studies of self-forming ZnO nanocolumn and nanocone arrays grown by PLD on various substrates , 2010 .

[47]  Shichao Niu,et al.  Light Trapping Effect in Wing Scales of Butterfly Papilio peranthus and Its Simulations , 2013 .

[48]  Yoshiaki Kanamori,et al.  Antireflection sub-wavelength gratings fabricated by spin-coating replication , 2005 .

[49]  Heon Lee,et al.  Enhanced transmittance of glass plates for solar cells using nano-imprint lithography , 2010 .

[50]  L. Chi,et al.  Biomimetic Antireflective Silicon Nanocones Array for Small Molecules Analysis , 2012, Journal of The American Society for Mass Spectrometry.

[51]  L. Coldren,et al.  Deep and tapered silicon photonic crystals for achieving anti-reflection and enhanced absorption. , 2010, Optics express.

[52]  Gabriel Loget,et al.  Fabrication of broadband antireflective plasmonic gold nanocone arrays on flexible polymer films. , 2013, Nano letters.

[53]  Gerald Earle Jellison,et al.  Light confinement-induced antireflection of ZnO nanocones , 2011 .

[54]  J. Hsu,et al.  ZnO nanostructures as efficient antireflection layers in solar cells. , 2008, Nano letters.

[55]  Ho Won Jang,et al.  Superhydrophobic and antireflective nanograss-coated glass for high performance solar cells , 2014, Nano Research.

[56]  Zhongfan Liu,et al.  Cicada wings: a stamp from nature for nanoimprint lithography. , 2006, Small.

[57]  Debajyoti Das,et al.  Generally Applicable Self-Masked Dry Etching Technique for Nanotip Array Fabrication , 2004 .

[58]  Texture profile and aspect ratio influence on the front reflectance of solar cells , 2006 .

[59]  Peng Jiang,et al.  Broadband moth-eye antireflec tion coatings on silicon , 2008 .

[60]  Zhengli Zhang,et al.  Morphology-controlled synthesis of ZnO replicas with photonic structures from butterfly (Papilio paris) wing scales for tunable optical properties. , 2012, Nanoscale.

[61]  J. Shieh,et al.  Decreasing reflection through the mutually positive effects of nanograss and nanopillars , 2014 .

[62]  Bo Li,et al.  Excellent Structure-Based Multifunction of Morpho Butterfly Wings: A Review , 2015 .

[63]  Luquan Ren,et al.  Anisotropism of the Non-Smooth Surface of Butterfly Wing , 2009 .

[64]  Kazuhiro Hane,et al.  100 nm period silicon antireflection structures fabricated using a porous alumina membrane mask , 2001 .

[65]  Tongxiang Fan,et al.  Butterflies: inspiration for solar cells and sunlight water-splitting catalysts , 2012 .

[66]  Jiann Shieh,et al.  Plasma nanofabrications and antireflection applications , 2007 .

[67]  Zhong Lin Wang,et al.  Bio-inspired fabrication of antireflection nanostructures by replicating fly eyes , 2008, Nanotechnology.

[68]  Hsuen‐Li Chen,et al.  Using colloidal lithography to fabricate and optimize sub-wavelength pyramidal and honeycomb structures in solar cells. , 2007, Optics express.

[69]  E. Fred Schubert,et al.  Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection , 2007 .