Analysis and Control of the DC Drift in LiNbO$_{3}$-Based Mach–Zehnder Modulators

The drift issue induces slow drifting of the optimum operating point for high efficiency or large nonlinearities in analog optical links, and requires complex control of the offset bias voltage for achieving high extinction ratio in digital optical links. We discuss and analyze the different sources of the drift in commercially LiNbO3 Mach-Zehnder modulators. The different extrinsic and intrinsic origins are compared in terms of phase shift and the different corresponding orders of magnitude are given, pointing out the predominant role of the intrinsic (dc) drift. We show the large role played by the electrical inhomogeneities at the surface of the LiNbO3 substrate by highlighting the link between the time dependence of the dc drift and the electrical conductivity measured at the surface and in the volume of the LiNbO3 substrate. This allows to propose a solution to the drift issue which consists in the engineering of the electrical conductivity of the lithium niobate substrate.

[1]  A low DC-drift Ti:LiNbO3 modulator assured over 15 years , 1992 .

[2]  G. Betts,et al.  Effect of annealing on photorefractive damage in titanium-indiffused LiNbO/sub 3/ modulators , 1994, IEEE Photonics Technology Letters.

[4]  Schlarb,et al.  Refractive indices of lithium niobate as a function of temperature, wavelength, and composition: A generalized fit. , 1993, Physical review. B, Condensed matter.

[5]  R. Becker Circuit effect in LiNbO(3) channel-waveguide modulators. , 1985, Optics letters.

[6]  T. Hara,et al.  LiNbO3 optical intensity modulator packaged with monitor photodiode , 2001, IEEE Photonics Technology Letters.

[7]  P. Bourson,et al.  Characterization of Ti : LiNbO3 waveguides by micro-raman and luminescence spectroscopy , 2004 .

[8]  G. Li,et al.  Optical intensity modulators for digital and analog applications , 2003 .

[9]  M. Fontana,et al.  Influence of the temperature‐dependent spontaneous birefringence in the electro‐optic measurements of LiNbO3 , 1989 .

[10]  Junichiro Ichikawa,et al.  Progress and problems in reliability of Ti:LiNbO3 optical intensity modulators , 1995 .

[11]  Alastair M. Glass,et al.  High‐voltage bulk photovoltaic effect and the photorefractive process in LiNbO3 , 1974 .

[12]  K. Buse,et al.  Pyroelectric coefficients of LiNbO3 crystals of different compositions , 1994 .

[13]  Satoshi Makio,et al.  Increased Optical Damage Resistance and Transparency in MgO-Doped LiTaO3 Single Crystals , 1995 .

[15]  H. Nagata,et al.  Temperature dependence of dc drift of Ti:LiNbO3 optical modulators with sputter deposited SiO2 buffer layer , 1993 .

[16]  David R. Maack Reliability of lithium niobate Mach-Zehnder modulators for digital optical fiber telecommunication systems , 1999, Optics East.

[17]  Estimation of direct current bias and drift of Ti:LiNbO3 optical modulators , 1994 .

[18]  R. A. Becker ‘‘Thermal fixing’’ of Ti‐indiffused LiNbO3 channel waveguides for reduced photorefractive susceptibility , 1984 .

[19]  H. Nagata,et al.  DC-Voltage-induced thermal shift of bias point in LiNbO/sub 3/ optical Modulators , 2004, IEEE Photonics Technology Letters.

[20]  Alastair M. Glass,et al.  Optically induced crosstalk in LiNbO3 waveguide switches , 1980 .

[21]  Alfredo Pasquarello,et al.  Dielectric effect of a thin SiO 2 interlayer at the interface between Silicon and high- k Oxides , 2004 .

[22]  J. M. Cabrera,et al.  Accurate interferometric measurement of electro-optic coefficients: application to quasi-stoichiometric LiNbO3 , 1998 .

[23]  DC-drift suppression of Ti: LiNbO3 waveguide chip by minimizing the contamination in oxide buffer layer , 2006 .

[24]  William K. Burns,et al.  Novel electrostatic mechanism in the thermal instability of z‐cut LiNbO3 interferometers , 1986 .

[25]  H. Nagata,et al.  Dc drift reduction in LiNbO3 optical modulators by decreasing the water content of vacuum evaporation deposited SiO2 buffer layers , 1998 .

[26]  S. Korotky,et al.  An RC network analysis of long term Ti:LiNbO/sub 3/ bias stability , 1996 .

[27]  Ruey-Ching Twu,et al.  An optical homodyne technique to measure photorefractive-induced phase drifts in lithium niobate phase modulators. , 2008, Optics express.

[28]  M. Minakata,et al.  DC Drift Phenomena in LiNbO3 Optical Waveguide Devices , 1981 .

[29]  H. Nagata,et al.  Impurity Evaluations of SiO2 Films Formed on LiNbO3 Substrates , 1995 .

[30]  H. Nagata,et al.  Initial bias dependency in dc drift of z-cut LiNbO3 optical intensity modulators , 2000 .

[31]  H. Nagata,et al.  Refractive index fluctuations in deformed Ti:LiNbO3 waveguides due to SiO2 overlayer deposition , 1993 .

[32]  G. Betts,et al.  20 GHz optical analog link using an external modulator , 1990, IEEE Photonics Technology Letters.

[33]  E.L. Wooten,et al.  A review of lithium niobate modulators for fiber-optic communications systems , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[34]  Marko Zgonik,et al.  Material tensor parameters of LiNbO3 relevant for electro- and elasto-optics , 2002 .