Analysis and Control of the DC Drift in LiNbO$_{3}$-Based Mach–Zehnder Modulators
暂无分享,去创建一个
[1] A low DC-drift Ti:LiNbO3 modulator assured over 15 years , 1992 .
[2] G. Betts,et al. Effect of annealing on photorefractive damage in titanium-indiffused LiNbO/sub 3/ modulators , 1994, IEEE Photonics Technology Letters.
[4] Schlarb,et al. Refractive indices of lithium niobate as a function of temperature, wavelength, and composition: A generalized fit. , 1993, Physical review. B, Condensed matter.
[5] R. Becker. Circuit effect in LiNbO(3) channel-waveguide modulators. , 1985, Optics letters.
[6] T. Hara,et al. LiNbO3 optical intensity modulator packaged with monitor photodiode , 2001, IEEE Photonics Technology Letters.
[7] P. Bourson,et al. Characterization of Ti : LiNbO3 waveguides by micro-raman and luminescence spectroscopy , 2004 .
[8] G. Li,et al. Optical intensity modulators for digital and analog applications , 2003 .
[9] M. Fontana,et al. Influence of the temperature‐dependent spontaneous birefringence in the electro‐optic measurements of LiNbO3 , 1989 .
[10] Junichiro Ichikawa,et al. Progress and problems in reliability of Ti:LiNbO3 optical intensity modulators , 1995 .
[11] Alastair M. Glass,et al. High‐voltage bulk photovoltaic effect and the photorefractive process in LiNbO3 , 1974 .
[12] K. Buse,et al. Pyroelectric coefficients of LiNbO3 crystals of different compositions , 1994 .
[13] Satoshi Makio,et al. Increased Optical Damage Resistance and Transparency in MgO-Doped LiTaO3 Single Crystals , 1995 .
[15] H. Nagata,et al. Temperature dependence of dc drift of Ti:LiNbO3 optical modulators with sputter deposited SiO2 buffer layer , 1993 .
[16] David R. Maack. Reliability of lithium niobate Mach-Zehnder modulators for digital optical fiber telecommunication systems , 1999, Optics East.
[17] Estimation of direct current bias and drift of Ti:LiNbO3 optical modulators , 1994 .
[18] R. A. Becker. ‘‘Thermal fixing’’ of Ti‐indiffused LiNbO3 channel waveguides for reduced photorefractive susceptibility , 1984 .
[19] H. Nagata,et al. DC-Voltage-induced thermal shift of bias point in LiNbO/sub 3/ optical Modulators , 2004, IEEE Photonics Technology Letters.
[20] Alastair M. Glass,et al. Optically induced crosstalk in LiNbO3 waveguide switches , 1980 .
[21] Alfredo Pasquarello,et al. Dielectric effect of a thin SiO 2 interlayer at the interface between Silicon and high- k Oxides , 2004 .
[22] J. M. Cabrera,et al. Accurate interferometric measurement of electro-optic coefficients: application to quasi-stoichiometric LiNbO3 , 1998 .
[23] DC-drift suppression of Ti: LiNbO3 waveguide chip by minimizing the contamination in oxide buffer layer , 2006 .
[24] William K. Burns,et al. Novel electrostatic mechanism in the thermal instability of z‐cut LiNbO3 interferometers , 1986 .
[25] H. Nagata,et al. Dc drift reduction in LiNbO3 optical modulators by decreasing the water content of vacuum evaporation deposited SiO2 buffer layers , 1998 .
[26] S. Korotky,et al. An RC network analysis of long term Ti:LiNbO/sub 3/ bias stability , 1996 .
[27] Ruey-Ching Twu,et al. An optical homodyne technique to measure photorefractive-induced phase drifts in lithium niobate phase modulators. , 2008, Optics express.
[28] M. Minakata,et al. DC Drift Phenomena in LiNbO3 Optical Waveguide Devices , 1981 .
[29] H. Nagata,et al. Impurity Evaluations of SiO2 Films Formed on LiNbO3 Substrates , 1995 .
[30] H. Nagata,et al. Initial bias dependency in dc drift of z-cut LiNbO3 optical intensity modulators , 2000 .
[31] H. Nagata,et al. Refractive index fluctuations in deformed Ti:LiNbO3 waveguides due to SiO2 overlayer deposition , 1993 .
[32] G. Betts,et al. 20 GHz optical analog link using an external modulator , 1990, IEEE Photonics Technology Letters.
[33] E.L. Wooten,et al. A review of lithium niobate modulators for fiber-optic communications systems , 2000, IEEE Journal of Selected Topics in Quantum Electronics.
[34] Marko Zgonik,et al. Material tensor parameters of LiNbO3 relevant for electro- and elasto-optics , 2002 .