Towards Z_2-protected gauge--Higgs unification

In theories with flux compactification in eight or higher dimensions, the extra-dimensional components of the gauge field may be regarded as the Higgs field candidates. We suggest a way to protect these components from getting large tree-level masses by imposing a $Z_2$-symmetry acting on compact manifolds and background fields on them. In our scheme the infinite series of heavy KK modes naturally decouples from the light Higgs candidates, whose number is generically larger than one. We also present toy models with three families of leptons, illustrating that the Yukawa sector in our scheme is fairly strongly constrained. In one of these models, one fermion gets a tree-level mass after electroweak symmetry breaking, while two others remain naturally massless at the tree level.

[1]  Y. Hosotani Gauge-Higgs Unification and LHC/ILC , 2007, 0704.0883.

[2]  N. Okada,et al.  Higgs boson mass from gauge-Higgs unification , 2007, 0705.3035.

[3]  M. Serone,et al.  Electroweak symmetry breaking and precision tests with a fifth dimension , 2006, hep-ph/0605292.

[4]  S. Shimasaki,et al.  Gauge-Higgs unification and quark-lepton phenomenology in the warped spacetime , 2006, hep-ph/0601241.

[5]  N. Haba,et al.  Effective theoretical approach of Gauge-Higgs unification model and its phenomenological applications , 2005, hep-ph/0511046.

[6]  C. Csáki,et al.  Fully radiative electroweak symmetry breaking , 2005, hep-ph/0510366.

[7]  A. Pomarol,et al.  The Minimal Composite Higgs Model , 2004, hep-ph/0412089.

[8]  V. Nair,et al.  Fuzzy spaces, the M(atrix) model and the quantum Hall effect , 2004, hep-th/0407007.

[9]  N. Haba,et al.  Dynamical symmetry breaking in gauge-Higgs unification on an orbifold , 2004, hep-ph/0401183.

[10]  M. Serone,et al.  Gauge-Higgs unification in orbifold models , 2003, hep-th/0312267.

[11]  J. Frère,et al.  Flavour violation with a single generation , 2003, hep-ph/0309014.

[12]  A. Pomarol,et al.  Higgs as a holographic pseudo-Goldstone boson , 2003, hep-ph/0306259.

[13]  M. Serone,et al.  Electroweak symmetry breaking and fermion masses from extra dimensions , 2003, hep-ph/0304220.

[14]  J. Frère,et al.  Fermions in the vortex background on a sphere , 2003, hep-ph/0304117.

[15]  M. Shaposhnikov,et al.  QED from six-dimensional vortex and gauge anomalies , 2003, hep-th/0303247.

[16]  H. Murayama,et al.  Standard model Higgs from higher dimensional gauge fields , 2002, hep-ph/0210133.

[17]  G. Dvali,et al.  Origin of spontaneous symmetry breaking in theories with large extra dimensions , 2001, hep-ph/0102307.

[18]  M. Quirós,et al.  Finite Higgs mass without supersymmetry , 2001, hep-th/0108005.

[19]  M. Serone,et al.  Nonlocal symmetry breaking in Kaluza-Klein theories. , 2001, Physical Review Letters.

[20]  Howard Georgi,et al.  Electroweak symmetry breaking from dimensional deconstruction , 2001, hep-ph/0105239.

[21]  J. Frère,et al.  Three generations on a local vortex in extra dimensions , 2000, hep-ph/0012306.

[22]  E. Pont'on,et al.  Massive higher dimensional gauge fields as messengers of supersymmetry breaking , 1999, hep-ph/9909248.

[23]  H. Hatanaka,et al.  The Gauge hierarchy problem and higher dimensional gauge theories , 1998, hep-th/9805067.

[24]  J. Overduin,et al.  Kaluza-Klein gravity , 1997, gr-qc/9805018.

[25]  N. Krasnikov Ultraviolet fixed point behaviour of the five-dimensional Yang-Mills theory, the gauge hierarchy problem and a possible new dimension at the TeV scale , 1991 .

[26]  Y. Hosotani Dynamics of non-integrable phases and gauge symmetry breaking , 1989 .

[27]  J. Mourao,et al.  SCALAR FIELDS IN THE DIMENSIONAL REDUCTION SCHEME FOR SYMMETRIC SPACES , 1989 .

[28]  Y. Kubyshin,et al.  Higgs potentials as “inheritance” from higher space-time dimensions. II. Construction of Higgs models , 1986 .

[29]  Y. Kubyshin,et al.  Higgs potentials as “inheritance” from higher space-time dimensions I. Dimensional reduction and scalar fields , 1986 .

[30]  P. Frampton,et al.  Spontaneous compactification and chiral fermions , 1985 .

[31]  A. Salam,et al.  Instanton induced compactification and fermion chirality , 1983 .

[32]  Y. Hosotani Dynamical Gauge Symmetry Breaking as the Casimir Effect , 1983 .

[33]  Y. Hosotani Dynamical Mass Generation by Compact Extra Dimensions , 1983 .

[34]  A. Salam,et al.  Instability of higher dimensional Yang-Mills systems , 1983 .

[35]  A. Salam,et al.  Spontaneous Compactification in Six-Dimensional Einstein-Maxwell Theory , 1983 .

[36]  E. Witten FERMION QUANTUM NUMBERS IN KALUZA-KLEIN THEORY , 1983 .

[37]  N. Manton,et al.  Space-time symmetries in gauge theories , 1980 .

[38]  N. Manton A new six-dimensional approach to the Weinberg-Salam model , 1979 .

[39]  D. Fairlie Higgs fields and the determination of the Weinberg angle , 1979 .