Effect of hydrological modification on the potential toxicity of Microcystis aeruginosa complex in Salto Grande reservoir, Uruguay.

[1]  G. Piñeiro,et al.  Rise of toxic cyanobacterial blooms is promoted by agricultural intensification in the basin of a large subtropical river of South America , 2023, Global change biology.

[2]  S. Ruberg,et al.  Metagenomic and Metatranscriptomic Insights into Population Diversity of Microcystis Blooms: Spatial and Temporal Dynamics of mcy Genotypes, Including a Partial Operon That Can Be Abundant and Expressed , 2022, Applied and environmental microbiology.

[3]  A. Segura,et al.  Genotyping and Multivariate Regression Trees Reveal Ecological Diversification within the Microcystis aeruginosa Complex along a Wide Environmental Gradient , 2021, Applied and environmental microbiology.

[4]  O. Gutiérrez,et al.  A reply to "Relevant factors in the eutrophication of the Uruguay River and the Río Negro". , 2021, The Science of the total environment.

[5]  Vincent J. Denef,et al.  The genetic and ecophysiological diversity of Microcystis. , 2021, Environmental microbiology.

[6]  A. Segura,et al.  Rapid freshwater discharge on the coastal ocean as a mean of long distance spreading of an unprecedented toxic cyanobacteria bloom. , 2021, The Science of the total environment.

[7]  A. Segura,et al.  A trait‐based approach predicting community assembly and dominance of microbial invasive species , 2021 .

[8]  F. Hellweger,et al.  Episodic Decrease in Temperature Increases mcy Gene Transcription and Cellular Microcystin in Continuous Cultures of Microcystis aeruginosa PCC 7806 , 2020, Frontiers in Microbiology.

[9]  K. Shimizu,et al.  Toxic cyanobacteria and microcystin dynamics in a tropical reservoir: assessing the influence of environmental variables , 2020, Environmental Science and Pollution Research.

[10]  A. Segura,et al.  Morphology captures toxicity in Microcystis aeruginosa complex: Evidence from a wide environmental gradient✰. , 2020, Harmful algae.

[11]  S. Wilhelm,et al.  The Complicated and Confusing Ecology of Microcystis Blooms , 2020, mBio.

[12]  E. Dittmann,et al.  Salt Shock Responses of Microcystis Revealed through Physiological, Transcript, and Metabolomic Analyses , 2020, Toxins.

[13]  Mark Mulligan,et al.  GOODD, a global dataset of more than 38,000 georeferenced dams , 2020, Scientific Data.

[14]  Z. Amzil,et al.  Demonstrated transfer of cyanobacteria and cyanotoxins along a freshwater-marine continuum in France. , 2019, Harmful algae.

[15]  M. Thieme,et al.  Mapping the world’s free-flowing rivers , 2019, Nature.

[16]  Kwang-Seuk Jeong,et al.  Determination of sensitive variables regardless of hydrological alteration in artificial neural network model of chlorophyll a: Case study of Nakdong River , 2019, Ecological Modelling.

[17]  N. Fortin,et al.  Coherence of Microcystis species revealed through population genomics , 2019, bioRxiv.

[18]  Amber O. Brown,et al.  Mesohaline conditions represent the threshold for oxidative stress, cell death and toxin release in the cyanobacterium Microcystis aeruginosa. , 2019, Aquatic toxicology.

[19]  H. Paerl,et al.  Seasonal Gene Expression and the Ecophysiological Implications of Toxic Microcystis aeruginosa Blooms in Lake Taihu. , 2018, Environmental science & technology.

[20]  Claudia Piccini,et al.  Detección de poblaciones tóxicas de Microcystis spp. con distintas preferencias ambientales. Estudio de caso embalse de Salto Grande , 2018, INNOTEC.

[21]  T. Sano,et al.  Adaptation of the Freshwater Bloom-Forming Cyanobacterium Microcystis aeruginosa to Brackish Water Is Driven by Recent Horizontal Transfer of Sucrose Genes , 2018, Front. Microbiol..

[22]  E. Anderson,et al.  Fragmentation of Andes-to-Amazon connectivity by hydropower dams , 2018, Science Advances.

[23]  A. Segura,et al.  A multilevel trait-based approach to the ecological performance of Microcystis aeruginosa complex from headwaters to the ocean. , 2017, Harmful algae.

[24]  F. Bordet,et al.  Influence of light and mixing regime on bloom‐forming phytoplankton in a subtropical reservoir , 2017 .

[25]  A. Segura,et al.  Dynamics of toxic genotypes of Microcystis aeruginosa complex (MAC) through a wide freshwater to marine environmental gradient. , 2017, Harmful algae.

[26]  J. Geist,et al.  Influence of temperature, mixing, and addition of microcystin‐LR on microcystin gene expression in Microcystis aeruginosa , 2016, MicrobiologyOpen.

[27]  M. Grabowska,et al.  The influence of hydrological conditions on phytoplankton community structure and cyanopeptide concentration in dammed lowland river , 2016, Environmental Monitoring and Assessment.

[28]  H. Paerl,et al.  A review of the global ecology, genomics, and biogeography of the toxic cyanobacterium, Microcystis spp. , 2016, Harmful algae.

[29]  C. Stow,et al.  The dual role of nitrogen supply in controlling the growth and toxicity of cyanobacterial blooms. , 2016, Harmful algae.

[30]  H. Paerl,et al.  The persistence of cyanobacterial (Microcystis spp.) blooms throughout winter in Lake Taihu, China , 2016 .

[31]  G. Zúñiga,et al.  Microcystin production in Microcystis aeruginosa: effect of type of strain, environmental factors, nutrient concentrations, and N:P ratio on mcyA gene expression , 2016, Aquatic Ecology.

[32]  M. Manefield,et al.  Changes in metabolites, antioxidant system, and gene expression in Microcystis aeruginosa under sodium chloride stress. , 2015, Ecotoxicology and environmental safety.

[33]  Bong-Soo Kim,et al.  Temporal shifts in cyanobacterial communities at different sites on the Nakdong River in Korea. , 2013, Water research.

[34]  M. Bes,et al.  Phosphate deficiency (N/P 40:1) induces mcyD transcription and microcystin synthesis in Microcystis aeruginosa PCC7806. , 2013, Plant physiology and biochemistry : PPB.

[35]  Hans W. Paerl,et al.  Harmful Cyanobacterial Blooms: Causes, Consequences, and Controls , 2013, Microbial Ecology.

[36]  Rebecca Ng,et al.  Implications of Dam Obstruction for Global Freshwater Fish Diversity , 2012 .

[37]  F. Bordet,et al.  Bloom forming cyanobacterial complexes co-occurring in a subtropical large reservoir: validation of dominant eco-strategies , 2012, Hydrobiologia.

[38]  J. Humbert,et al.  High-frequency monitoring of the genetic diversity and the potential toxicity of a Microcystis aeruginosa bloom in a French shallow lake. , 2012, FEMS microbiology ecology.

[39]  M. Bes,et al.  An active photosynthetic electron transfer chain required for mcyD transcription and microcystin synthesis in Microcystis aeruginosa PCC7806 , 2012, Ecotoxicology.

[40]  M. Bes,et al.  Expression of fur and its antisense α-fur from Microcystis aeruginosa PCC7806 as response to light and oxidative stress. , 2011, Journal of plant physiology.

[41]  S. Boo,et al.  Annual variation of Microcystis genotypes and their potential toxicity in water and sediment from a eutrophic reservoir. , 2010, FEMS microbiology ecology.

[42]  P. McIntyre,et al.  Global threats to human water security and river biodiversity , 2010, Nature.

[43]  Congming Lu,et al.  Salt stress induces a decrease in excitation energy transfer from phycobilisomes to photosystem II but an increase to photosystem I in the cyanobacterium Spirulina platensis. , 2010, Journal of plant physiology.

[44]  M. Frisk,et al.  The historic influence of dams on diadromous fish habitat with a focus on river herring and hydrologic longitudinal connectivity , 2010, Landscape Ecology.

[45]  J. Humbert,et al.  Spatiotemporal changes in the genetic diversity in French bloom-forming populations of the toxic cyanobacterium, Microcystis aeruginosa. , 2009, Environmental microbiology reports.

[46]  A. Latifi,et al.  Oxidative stress in cyanobacteria. , 2009, FEMS microbiology reviews.

[47]  K. Izydorczyk,et al.  Influence of abiotic and biotic factors on microcystin content in Microcystis aeruginosa cells in a eutrophic temperate reservoir , 2008 .

[48]  Kwang-Seuk Jeong,et al.  Delayed influence of dam storage and discharge on the determination of seasonal proliferations of Microcystis aeruginosa and Stephanodiscus hantzschii in a regulated river system of the lower Nakdong River (South Korea). , 2007, Water research.

[49]  J. Huisman,et al.  Salt tolerance of the harmful cyanobacterium Microcystis aeruginosa , 2007 .

[50]  M. Fischbach,et al.  Assembly-line enzymology for polyketide and nonribosomal Peptide antibiotics: logic, machinery, and mechanisms. , 2006, Chemical reviews.

[51]  R. Quiros,et al.  Características Limnológicas del Embalse de Salto Grande, III: Fitoplancton y su Relación con Parámetros Ambientales , 2005 .

[52]  T. Ahn,et al.  Effects of Temperature and Light on Microcystin Synthetase Gene Transcription in Microcystis Aeruginosa , 2004 .

[53]  R. Kurmayer,et al.  Application of Real-Time PCR for Quantification of Microcystin Genotypes in a Population of the Toxic Cyanobacterium Microcystis sp , 2003, Applied and Environmental Microbiology.

[54]  Lizet De León Abundancia y diversidad del fitoplancton en el Embalse de Salto Grande (Argentina – Uruguay). Ciclo estacional y distribución espacial , 2003, Limnetica.

[55]  E. Dittmann,et al.  Multiple Alternate Transcripts Direct the Biosynthesis of Microcystin, a Cyanobacterial , 2002, Applied and Environmental Microbiology.

[56]  David R. Anderson,et al.  Bayesian Methods in Cosmology: Model selection and multi-model inference , 2009 .

[57]  B. Neilan,et al.  Ecological and molecular investigations of cyanotoxin production. , 2001, FEMS microbiology ecology.

[58]  E. Dittmann,et al.  Structural organization of microcystin biosynthesis in Microcystis aeruginosa PCC7806: an integrated peptide-polyketide synthetase system. , 2000, Chemistry & biology.

[59]  B. Sherman,et al.  Management strategies for cyanobacterial blooms in an impounded lowland river , 2000 .

[60]  E. Dittmann,et al.  Light and the Transcriptional Response of the Microcystin Biosynthesis Gene Cluster , 2000, Applied and Environmental Microbiology.

[61]  T. Nunoshiba,et al.  Role of Iron and Superoxide for Generation of Hydroxyl Radical, Oxidative DNA Lesions, and Mutagenesis in Escherichia coli * , 1999, The Journal of Biological Chemistry.

[62]  M. Salkinoja-Salonen,et al.  Variation of Microcystin Content of Cyanobacterial Blooms and Isolated Strains in Lake Grand-Lieu (France) , 1998, Microbial Ecology.

[63]  E. M. Acha,et al.  Physical oceanography of the Ro de la Plata Estuary, Argentina , 1997 .

[64]  J. Foster,et al.  The role of fur in the acid tolerance response of Salmonella typhimurium is physiologically and genetically separable from its role in iron acquisition , 1996, Journal of bacteriology.

[65]  K. Zimmermann,et al.  PSEUDO‐R2 MEASURES FOR SOME COMMON LIMITED DEPENDENT VARIABLE MODELS , 1996 .

[66]  D. Jacobs,et al.  Genetic diversity and phylogeny of toxic cyanobacteria determined by DNA polymorphisms within the phycocyanin locus , 1995, Applied and environmental microbiology.

[67]  K. Christoffersen,et al.  Measurements of chlorophyll-a from phytoplankton using ethanol as extraction solvent , 1987, Archiv für Hydrobiologie.

[68]  H. Utermöhl Zur Vervollkommnung der quantitativen Phytoplankton-Methodik , 1958 .

[69]  D. C. Chandler Limnological Studies of Western Lake Erie: II. Light Penetration and Its Relation to Turbidity , 1942 .