Aberrant epidermal growth factor receptor signaling and enhanced sensitivity to EGFR inhibitors in lung cancer.

Epidermal growth factor receptor (EGFR) is occasionally amplified and/or mutated in non-small cell lung cancer (NSCLC) and can be coexpressed with other members of the HER receptor family to form functional heterodimers. We therefore investigated lung cancer cell lines for alterations in EGFR gene copy number, enhanced expression of EGFR and other HER family members, and EGFR coding sequence mutations and correlated these findings with response to treatment with the EGFR inhibitors and the kinetics of ligand-induced signaling. We show here that somatic deletions in the tyrosine kinase domain of EGFR were associated with increased EGFR gene copy number in NSCLC. Treatment with the specific EGFR tyrosine kinase inhibitors (TKI) gefitinib or erlotinib or the EGFR inhibitory antibody cetuximab induced apoptosis of HCC827, a NSCLC cell line with EGFR gene amplification and an exon 19 deletion. H1819, a NSCLC cell line that expresses high levels of EGFR, ErbB2, and ErbB3 but has wild-type EGFR, showed intermediate sensitivity to TKIs. In both cell lines, ligand-induced receptor tyrosine phosphorylation was delayed and prolonged and AKT was constitutively phosphorylated (but remained inhibitable by EGFR TKI). Thus, in addition to EGFR mutations, other factors in NSCLC cells, such as high expression of ErbB family members, may constitutively activate AKT and sensitize cells to EGFR inhibitors.

[1]  Patricia L. Harris,et al.  Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. , 2004, The New England journal of medicine.

[2]  S. Gabriel,et al.  EGFR Mutations in Lung Cancer: Correlation with Clinical Response to Gefitinib Therapy , 2004, Science.

[3]  T. Ried,et al.  Centrosome abnormalities, recurring deletions of chromosome 4, and genomic amplification of HER2/neu define mouse mammary gland adenocarcinomas induced by mutant HER2/neu , 2002, Oncogene.

[4]  Q. She,et al.  Resistance to gefitinib in PTEN-null HER-overexpressing tumor cells can be overcome through restoration of PTEN function or pharmacologic modulation of constitutive phosphatidylinositol 3'-kinase/Akt pathway signaling. , 2003, Clinical cancer research : an official journal of the American Association for Cancer Research.

[5]  R. Wilson,et al.  EGF receptor gene mutations are common in lung cancers from "never smokers" and are associated with sensitivity of tumors to gefitinib and erlotinib. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[6]  E. Dmitrovsky,et al.  Aberrant expression of p53 or the epidermal growth factor receptor is frequent in early bronchial neoplasia and coexpression precedes squamous cell carcinoma development. , 1995, Cancer research.

[7]  Christian A. Rees,et al.  Microarray analysis reveals a major direct role of DNA copy number alteration in the transcriptional program of human breast tumors , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[8]  S. Ho,et al.  Site-directed mutagenesis by overlap extension using the polymerase chain reaction. , 1989, Gene.

[9]  Chan Zeng,et al.  Epidermal growth factor receptor in non-small-cell lung carcinomas: correlation between gene copy number and protein expression and impact on prognosis. , 2003, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[10]  G. Mills,et al.  Loss of PTEN/MMAC1/TEP in EGF receptor-expressing tumor cells counteracts the antitumor action of EGFR tyrosine kinase inhibitors , 2003, Oncogene.

[11]  N. Robert,et al.  Multinational study of the efficacy and safety of humanized anti-HER2 monoclonal antibody in women who have HER2-overexpressing metastatic breast cancer that has progressed after chemotherapy for metastatic disease. , 1999, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[12]  Daniel A. Haber,et al.  Gefitinib-Sensitizing EGFR Mutations in Lung Cancer Activate Anti-Apoptotic Pathways , 2004, Science.

[13]  E. Dmitrovsky,et al.  Differential expression of the epidermal growth factor receptor and its ligands in primary non-small cell lung cancers and adjacent benign lung. , 1993, Cancer research.

[14]  Ash A. Alizadeh,et al.  Genome-wide analysis of DNA copy-number changes using cDNA microarrays , 1999, Nature Genetics.

[15]  Joseph Schlessinger,et al.  Ligand-Induced, Receptor-Mediated Dimerization and Activation of EGF Receptor , 2002, Cell.

[16]  Masahiro Fukuoka,et al.  Multi-institutional randomized phase II trial of gefitinib for previously treated patients with advanced non-small-cell lung cancer (The IDEAL 1 Trial) [corrected]. , 2003, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[17]  R. Herbst,et al.  TRIBUTE - A phase III trial of erlotinib HCl (OSI-774) combined with carboplatin and paclitaxel (CP) chemotherapy in advanced non-small cell lung cancer (NSCLC). , 2004, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[18]  H Steven Wiley,et al.  Trafficking of the ErbB receptors and its influence on signaling. , 2003, Experimental cell research.

[19]  G. Merlino,et al.  Genetic instability favoring transversions associated with ErbB2-induced mammary tumorigenesis , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[20]  David Cella,et al.  Efficacy of gefitinib, an inhibitor of the epidermal growth factor receptor tyrosine kinase, in symptomatic patients with non-small cell lung cancer: a randomized trial. , 2003, JAMA.

[21]  A. Bezjak,et al.  A randomized placebo-controlled trial of erlotinib in patients with advanced non-small cell lung cancer (NSCLC) following failure of 1st line or 2nd line chemotherapy. A National Cancer Institute of Canada Clinical Trials Group (NCIC CTG) trial , 2004 .

[22]  J. Baselga,et al.  Epithelial growth factor receptor interacting agents. , 2002, Hematology/oncology clinics of North America.

[23]  H. Wiley,et al.  ErbB-2 Amplification Inhibits Down-regulation and Induces Constitutive Activation of Both ErbB-2 and Epidermal Growth Factor Receptors* , 1999, The Journal of Biological Chemistry.