Two‐Dimensional Materials for Beyond‐Lithium‐Ion Batteries

Lithium‐ion batteries (LIBs) have dominated the portable electronics industry and solid‐state electrochemical research and development for the past two decades. In light of possible concerns over the cost and future availability of lithium, sodium‐ion batteries (SIBs) and other new technologies have emerged as candidates for large‐scale stationary energy storage. Research in these technologies has increased dramatically with a focus on the development of new materials for both the positive and negative electrodes that can enhance the cycling stability, rate capability, and energy density. Two‐dimensional (2D) materials are showing promise for many energy‐related applications and particularly for energy storage, because of the efficient ion transport between the layers and the large surface areas available for improved ion adsorption and faster surface redox reactions. Recent research highlights on the use of 2D materials in these future ‘beyond‐lithium‐ion’ battery systems are reviewed, and strategies to address challenges are discussed as well as their prospects.

[1]  S. A. Wilson,et al.  Lamellar Compound of Sodium with Graphite , 1958, Nature.

[2]  M. Whittingham,et al.  Electrical Energy Storage and Intercalation Chemistry , 1976, Science.

[3]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[4]  M. Stanley Whittingham,et al.  Chemistry of intercalation compounds: Metal guests in chalcogenide hosts , 1978 .

[5]  John B. Goodenough,et al.  LixCoO2 (0, 1980 .

[6]  G. H. Newman,et al.  Ambient Temperature Cycling of an Na ‐ TiS2 Cell , 1980 .

[7]  P. Hagenmuller,et al.  Structural classification and properties of the layered oxides , 1980 .

[8]  P. Hagenmuller,et al.  Electrochemical intercalation of sodium in NaxCoO2 bronzes , 1981 .

[9]  M. Fouletier,et al.  Electrochemical intercalation of sodium in graphite , 1988 .

[10]  T. Gregory,et al.  Nonaqueous Electrochemistry of Magnesium Applications to Energy Storage , 1990 .

[11]  Tsutomu Ohzuku,et al.  Formation of Lithium‐Graphite Intercalation Compounds in Nonaqueous Electrolytes and Their Application as a Negative Electrode for a Lithium Ion (Shuttlecock) Cell , 1993 .

[12]  T. Yamabe,et al.  Structure and properties of deeply Li-doped polyacenic semiconductor materials beyond C6Li stage , 1994 .

[13]  K. M. Abraham,et al.  A Polymer Electrolyte‐Based Rechargeable Lithium/Oxygen Battery , 1996 .

[14]  K. S. Nanjundaswamy,et al.  Phospho‐olivines as Positive‐Electrode Materials for Rechargeable Lithium Batteries , 1997 .

[15]  Lester B. Lave,et al.  Clean Recycling of Lead‐Acid Batteries for Electric Vehicles: A Reply to Socolow and Thomas , 1997 .

[16]  Petr Novák,et al.  Insertion Electrode Materials for Rechargeable Lithium Batteries , 1998 .

[17]  D. Stevens,et al.  High Capacity Anode Materials for Rechargeable Sodium‐Ion Batteries , 2000 .

[18]  J. Tarascon,et al.  Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries , 2000, Nature.

[19]  T. Ohzuku,et al.  Layered Lithium Insertion Material of LiCo1/3Ni1/3Mn1/3O2 for Lithium-Ion Batteries , 2001 .

[20]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[21]  D. Aurbach,et al.  Electrolyte Solutions for Rechargeable Magnesium Batteries Based on Organomagnesium Chloroaluminate Complexes , 2002 .

[22]  Richard B. Kaner,et al.  A Chemical Route to Carbon Nanoscrolls , 2003, Science.

[23]  M. Winter,et al.  What are batteries, fuel cells, and supercapacitors? , 2004, Chemical reviews.

[24]  M. Whittingham,et al.  Some transition metal (oxy)phosphates and vanadium oxides for lithium batteries , 2005 .

[25]  P. Bruce,et al.  Nanostructured materials for advanced energy conversion and storage devices , 2005, Nature materials.

[26]  Gerald L. Kulcinski,et al.  US electric industry response to carbon constraint: a life-cycle assessment of supply side alternatives , 2005 .

[27]  A. Mitelman,et al.  Progress in Rechargeable Magnesium Battery Technology , 2007 .

[28]  V. Mochalin,et al.  Carbon nanoscrolls produced from acceptor-type graphite intercalation compounds , 2007 .

[29]  D. Aurbach,et al.  Progress in nonaqueous magnesium electrochemistry , 2007 .

[30]  Z. Wen,et al.  Research on sodium sulfur battery for energy storage , 2008 .

[31]  M. Armand,et al.  Building better batteries , 2008, Nature.

[32]  E. Yoo,et al.  Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. , 2008, Nano letters.

[33]  F. Risacher,et al.  Origin of Salts and Brine Evolution of Bolivian and Chilean Salars , 2009 .

[34]  K. C. Divya,et al.  Battery Energy Storage Technology for power systems-An overview , 2009 .

[35]  Xuejie Huang,et al.  Research on Advanced Materials for Li‐ion Batteries , 2009 .

[36]  Xiaoping Shen,et al.  Graphene nanosheets for enhanced lithium storage in lithium ion batteries , 2009 .

[37]  Philippe Moreau,et al.  Structure and Stability of Sodium Intercalated Phases in Olivine FePO4 , 2010 .

[38]  B. McCloskey,et al.  Lithium−Air Battery: Promise and Challenges , 2010 .

[39]  J. Goodenough Challenges for Rechargeable Li Batteries , 2010 .

[40]  Doron Aurbach,et al.  On the Way to Rechargeable Mg Batteries: The Challenge of New Cathode Materials† , 2010 .

[41]  K. Zaghib,et al.  Characterization of Na-based phosphate as electrode materials for electrochemical cells , 2011 .

[42]  Lelia Cosimbescu,et al.  Exfoliated MoS2 Nanocomposite as an Anode Material for Lithium Ion Batteries , 2010 .

[43]  V. Presser,et al.  Two‐Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2 , 2011, Advanced materials.

[44]  Sun Tai Kim,et al.  Metal–Air Batteries with High Energy Density: Li–Air versus Zn–Air , 2010 .

[45]  Ping He,et al.  A lithium–air capacitor–battery based on a hybrid electrolyte , 2011 .

[46]  B. Dunn,et al.  Electrical Energy Storage for the Grid: A Battery of Choices , 2011, Science.

[47]  Jun Liu,et al.  Electrochemical energy storage for green grid. , 2011, Chemical reviews.

[48]  Gerbrand Ceder,et al.  Challenges for Na-ion Negative Electrodes , 2011 .

[49]  Feng Li,et al.  Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium ion batteries. , 2011, ACS nano.

[50]  Haoshen Zhou,et al.  Li-air rechargeable battery based on metal-free graphene nanosheet catalysts. , 2011, ACS nano.

[51]  J. Liang,et al.  Functional Materials for Rechargeable Batteries , 2011, Advanced materials.

[52]  Fei Zhou,et al.  Porous ZnO nanosheets grown on copper substrates as anodes for lithium ion batteries , 2011 .

[53]  Chunsheng Wang,et al.  Sulfur-impregnated disordered carbon nanotubes cathode for lithium-sulfur batteries. , 2011, Nano letters.

[54]  Hong Li,et al.  Thermodynamic analysis on energy densities of batteries , 2011 .

[55]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[56]  Jean-Marie Tarascon,et al.  Li-O2 and Li-S batteries with high energy storage. , 2011, Nature materials.

[57]  Jaephil Cho,et al.  MoS₂ nanoplates consisting of disordered graphene-like layers for high rate lithium battery anode materials. , 2011, Nano letters.

[58]  Linda F. Nazar,et al.  Topochemical Synthesis of Sodium Metal Phosphate Olivines for Sodium-Ion Batteries , 2011 .

[59]  J. Goodenough,et al.  Monodisperse porous LiFePO4 microspheres for a high power Li-ion battery cathode. , 2011, Journal of the American Chemical Society.

[60]  Fan Zhang,et al.  Preventing Graphene Sheets from Restacking for High-Capacitance Performance , 2011 .

[61]  Hun‐Gi Jung,et al.  An improved high-performance lithium-air battery. , 2012, Nature chemistry.

[62]  Gerbrand Ceder,et al.  Electrode Materials for Rechargeable Sodium‐Ion Batteries: Potential Alternatives to Current Lithium‐Ion Batteries , 2012 .

[63]  Bruce Dunn,et al.  High-performance sodium-ion pseudocapacitors based on hierarchically porous nanowire composites. , 2012, ACS nano.

[64]  R. Kötz,et al.  Hybridization of rechargeable batteries and electrochemical capacitors: Principles and limits , 2012 .

[65]  L. Nazar,et al.  Sodium and sodium-ion energy storage batteries , 2012 .

[66]  Jiehua Liu,et al.  Two‐Dimensional Nanoarchitectures for Lithium Storage , 2012, Advanced materials.

[67]  Hua Zhang,et al.  Graphene-based composites. , 2012, Chemical Society reviews.

[68]  G. Shi,et al.  Graphene based catalysts , 2012 .

[69]  Yang‐Kook Sun,et al.  Reversible NaFePO4 electrode for sodium secondary batteries , 2012 .

[70]  Jean-Marie Tarascon,et al.  Erratum: Li–O 2 and Li–S batteries with high energy storage , 2012 .

[71]  Haoshen Zhou,et al.  Electrochemical Performance of Solid‐State Lithium–Air Batteries Using Carbon Nanotube Catalyst in the Air Electrode , 2012 .

[72]  Teófilo Rojo,et al.  Na-ion batteries, recent advances and present challenges to become low cost energy storage systems , 2012 .

[73]  Yuyan Shao,et al.  Electrocatalysts for Nonaqueous Lithium–Air Batteries: Status, Challenges, and Perspective , 2012 .

[74]  Pierre-Louis Taberna,et al.  MXene: a promising transition metal carbide anode for lithium-ion batteries , 2012 .

[75]  Yury Gogotsi,et al.  First principles study of two-dimensional early transition metal carbides , 2012 .

[76]  Yury Gogotsi,et al.  Two-dimensional transition metal carbides. , 2012, ACS nano.

[77]  Pierre Kubiak,et al.  Crystal chemistry of Na insertion/deinsertion in FePO4–NaFePO4 , 2012 .

[78]  Qing Hua Wang,et al.  Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. , 2012, Nature nanotechnology.

[79]  P. Bruce,et al.  A Reversible and Higher-Rate Li-O2 Battery , 2012, Science.

[80]  Andreas Stein,et al.  Porous Electrode Materials for Lithium‐Ion Batteries – How to Prepare Them and What Makes Them Special , 2012 .

[81]  Yue Ma,et al.  In situ nitrogenated graphene-few-layer WS2 composites for fast and reversible Li+ storage. , 2013, Nanoscale.

[82]  Philipp Adelhelm,et al.  A rechargeable room-temperature sodium superoxide (NaO2) battery. , 2013, Nature materials.

[83]  Xu Cui,et al.  Flexible and transparent MoS2 field-effect transistors on hexagonal boron nitride-graphene heterostructures. , 2013, ACS nano.

[84]  Chaohe Xu,et al.  Graphene-based electrodes for electrochemical energy storage , 2013 .

[85]  Doron Aurbach,et al.  Mg rechargeable batteries: an on-going challenge , 2013 .

[86]  Yury Gogotsi,et al.  Cation Intercalation and High Volumetric Capacitance of Two-Dimensional Titanium Carbide , 2013, Science.

[87]  H. Hng,et al.  Olivine-type nanosheets for lithium ion battery cathodes. , 2013, ACS nano.

[88]  Hee-Dae Lim,et al.  Enhanced Power and Rechargeability of a Li−O2 Battery Based on a Hierarchical‐Fibril CNT Electrode , 2013, Advanced materials.

[89]  E. Johnston-Halperin,et al.  Progress, challenges, and opportunities in two-dimensional materials beyond graphene. , 2013, ACS nano.

[90]  Li-Jun Wan,et al.  Lithium-sulfur batteries: electrochemistry, materials, and prospects. , 2013, Angewandte Chemie.

[91]  C. Rao,et al.  Graphene analogues of inorganic layered materials. , 2013, Angewandte Chemie.

[92]  B. Pan,et al.  Ultrathin nanosheets of MAX phases with enhanced thermal and mechanical properties in polymeric compositions: Ti3Si(0.75)Al(0.25)C2. , 2013, Angewandte Chemie.

[93]  Yury Gogotsi,et al.  New two-dimensional niobium and vanadium carbides as promising materials for Li-ion batteries. , 2013, Journal of the American Chemical Society.

[94]  Yury Gogotsi,et al.  Intercalation and delamination of layered carbides and carbonitrides , 2013, Nature Communications.

[95]  Wei Li,et al.  Sol-gel design strategy for ultradispersed TiO2 nanoparticles on graphene for high-performance lithium ion batteries. , 2013, Journal of the American Chemical Society.

[96]  A. Manthiram,et al.  Challenges and prospects of lithium-sulfur batteries. , 2013, Accounts of chemical research.

[97]  Zhenguo Yang,et al.  Advanced Intermediate-Temperature Na-S Battery , 2013 .

[98]  S. Dou,et al.  Reduced graphene oxide with superior cycling stability and rate capability for sodium storage , 2013 .

[99]  Yongchang Liu,et al.  Sandwich-structured graphene-like MoS2/C microspheres for rechargeable Mg batteries , 2013 .

[100]  D. Zhao,et al.  Two-dimensional mesoporous carbon nanosheets and their derived graphene nanosheets: synthesis and efficient lithium ion storage. , 2013, Journal of the American Chemical Society.

[101]  Donghan Kim,et al.  Sodium‐Ion Batteries , 2013 .

[102]  Xueliang Sun,et al.  Superior catalytic activity of nitrogen-doped graphene cathodes for high energy capacity sodium-air batteries. , 2013, Chemical communications.

[103]  Qian Sun,et al.  An enhanced electrochemical performance of a sodium-air battery with graphene nanosheets as air electrode catalysts. , 2013, Chemical communications.

[104]  Byung Gon Kim,et al.  Restacking-inhibited 3D reduced graphene oxide for high performance supercapacitor electrodes. , 2013, ACS nano.

[105]  Huanlei Wang,et al.  Carbon nanosheet frameworks derived from peat moss as high performance sodium ion battery anodes. , 2013, ACS nano.

[106]  Liquan Chen,et al.  Room-temperature stationary sodium-ion batteries for large-scale electric energy storage , 2013 .

[107]  Bruce Dunn,et al.  High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. , 2013, Nature materials.

[108]  A. Manthiram,et al.  Hydroxylated Graphene–Sulfur Nanocomposites for High‐Rate Lithium–Sulfur Batteries , 2013 .

[109]  H. Ahn,et al.  Hydrothermal synthesis of α-MnO2 and β-MnO2 nanorods as high capacity cathode materials for sodium ion batteries , 2013 .

[110]  M. Islam,et al.  Electrochemistry of Hollandite α-MnO2: Li-Ion and Na-Ion Insertion and Li2O Incorporation , 2013 .

[111]  Guangyuan Zheng,et al.  Nanostructured sulfur cathodes. , 2013, Chemical Society reviews.

[112]  Zhonghua Gu,et al.  Main Challenges for High Performance NAS Battery: Materials and Interfaces , 2013 .

[113]  Md. Mokhlesur Rahman,et al.  Electrochemical investigation of sodium reactivity with nanostructured Co3O4 for sodium-ion batteries. , 2014, Chemical communications.

[114]  Arumugam Manthiram,et al.  A perspective on the high-voltage LiMn1.5Ni0.5O4 spinel cathode for lithium-ion batteries , 2014 .

[115]  Gurpreet Singh,et al.  MoS2/graphene composite paper for sodium-ion battery electrodes. , 2014, ACS nano.

[116]  Shinichi Komaba,et al.  Research development on sodium-ion batteries. , 2014, Chemical reviews.

[117]  Jung Ho Yu,et al.  Two-dimensional layered transition metal disulphides for effective encapsulation of high-capacity lithium sulphide cathodes , 2014, Nature Communications.

[118]  Lele Peng,et al.  Two dimensional nanomaterials for flexible supercapacitors. , 2014, Chemical Society reviews.

[119]  Yang Li,et al.  Three-Dimensional Sulfur/Graphene Multifunctional Hybrid Sponges for Lithium-Sulfur Batteries with Large Areal Mass Loading , 2014, Scientific Reports.

[120]  Yury Gogotsi,et al.  Prediction and characterization of MXene nanosheet anodes for non-lithium-ion batteries. , 2014, ACS nano.

[121]  H. Schmidt,et al.  Large thermoelectricity via variable range hopping in chemical vapor deposition grown single-layer MoS2. , 2014, Nano letters.

[122]  Lele Peng,et al.  Chemically integrated two-dimensional hybrid zinc manganate/graphene nanosheets with enhanced lithium storage capability. , 2014, ACS nano.

[123]  Arumugam Manthiram,et al.  Rechargeable lithium-sulfur batteries. , 2014, Chemical reviews.

[124]  Henghui Zhou,et al.  Self-supported Li4Ti5O12 nanosheet arrays for lithium ion batteries with excellent rate capability and ultralong cycle life , 2014 .

[125]  Zaiping Guo,et al.  Enhanced sodium-ion battery performance by structural phase transition from two-dimensional hexagonal-SnS2 to orthorhombic-SnS. , 2014, ACS nano.

[126]  Z. Yin,et al.  Graphene and graphene-based materials for energy storage applications. , 2014, Small.

[127]  Haoshen Zhou,et al.  Fe2O3 nanocrystals anchored onto graphene nanosheets as the anode material for low-cost sodium-ion batteries. , 2014, Chemical communications.

[128]  Jihyun Hong,et al.  Aqueous rechargeable Li and Na ion batteries. , 2014, Chemical reviews.

[129]  Y. Gogotsi,et al.  Ti₃C₂ MXene as a high capacity electrode material for metal (Li, Na, K, Ca) ion batteries. , 2014, ACS applied materials & interfaces.

[130]  T. Hyeon,et al.  Two-dimensional assemblies of ultrathin titanate nanosheets for lithium ion battery anodes , 2014 .

[131]  Yan Yu,et al.  Li and Na storage behavior of bowl-like hollow Co3O4 microspheres as an anode material for lithium-ion and sodium-ion batteries , 2014 .

[132]  Hong‐Jie Peng,et al.  Unstacked double-layer templated graphene for high-rate lithium–sulphur batteries , 2014, Nature Communications.

[133]  Yu Ding,et al.  Self-assembled LiFePO4 nanowires with high rate capability for Li-ion batteries. , 2014, Chemical communications.

[134]  Ya‐Xia Yin,et al.  A Sandwich‐Like Hierarchically Porous Carbon/Graphene Composite as a High‐Performance Anode Material for Sodium‐Ion Batteries , 2014 .

[135]  Richard Van Noorden The rechargeable revolution: A better battery , 2014, Nature.

[136]  Yi Cui,et al.  Electrochemical tuning of MoS2 nanoparticles on three-dimensional substrate for efficient hydrogen evolution. , 2014, ACS nano.

[137]  Hua Wang,et al.  Graphene and graphene-like layered transition metal dichalcogenides in energy conversion and storage. , 2014, Small.

[138]  Lele Peng,et al.  Single-crystalline LiFePO4 nanosheets for high-rate Li-ion batteries. , 2014, Nano letters.

[139]  Haegyeom Kim,et al.  Graphene for advanced Li/S and Li/air batteries , 2014 .

[140]  J. Xue,et al.  Ultrasmall Fe₃O₄ nanoparticle/MoS₂ nanosheet composites with superior performances for lithium ion batteries. , 2014, Small.

[141]  Li-Jun Wan,et al.  A High‐Energy Room‐Temperature Sodium‐Sulfur Battery , 2014, Advanced materials.

[142]  Lele Peng,et al.  Self-assembled LiNi1/3Co1/3Mn1/3O2 nanosheet cathodes with tunable rate capability , 2015 .

[143]  J. Fahrenkamp-Uppenbrink A call for fossil fuel price reform , 2015 .

[144]  Arka Majumdar,et al.  Monolayer semiconductor nanocavity lasers with ultralow thresholds , 2015, Nature.

[145]  Hua Zhang,et al.  Two-dimensional transition metal dichalcogenide nanosheet-based composites. , 2015, Chemical Society reviews.

[146]  Yi Xie,et al.  Regulating the electrical behaviors of 2D inorganic nanomaterials for energy applications. , 2015, Small.

[147]  J. Tarascon,et al.  Towards greener and more sustainable batteries for electrical energy storage. , 2015, Nature chemistry.

[148]  Yi Cui,et al.  Physical and chemical tuning of two-dimensional transition metal dichalcogenides. , 2015, Chemical Society reviews.

[149]  J. Xie,et al.  Few‐Layered SnS2 on Few‐Layered Reduced Graphene Oxide as Na‐Ion Battery Anode with Ultralong Cycle Life and Superior Rate Capability , 2015 .

[150]  Linda F Nazar,et al.  The emerging chemistry of sodium ion batteries for electrochemical energy storage. , 2015, Angewandte Chemie.

[151]  B. Scrosati,et al.  The role of graphene for electrochemical energy storage. , 2015, Nature materials.

[152]  Zhichuan J. Xu,et al.  Ultrathin nickel oxide nanosheets for enhanced sodium and lithium storage , 2015 .

[153]  B. Dunn,et al.  High performance pseudocapacitor based on 2D layered metal chalcogenide nanocrystals. , 2015, Nano letters.

[154]  Yan Yao,et al.  Interlayer-expanded molybdenum disulfide nanocomposites for electrochemical magnesium storage. , 2015, Nano letters.

[155]  Teófilo Rojo,et al.  A comprehensive review of sodium layered oxides: powerful cathodes for Na-ion batteries , 2015 .

[156]  Yi Cui,et al.  Understanding the Anchoring Effect of Two-Dimensional Layered Materials for Lithium-Sulfur Batteries. , 2015, Nano letters.

[157]  Yi Xie,et al.  Surface chemical-modification for engineering the intrinsic physical properties of inorganic two-dimensional nanomaterials. , 2015, Chemical Society reviews.

[158]  L. Qu,et al.  Branched Graphene Nanocapsules for Anode Material of Lithium-Ion Batteries , 2015 .

[159]  Linda Wang,et al.  Scholars Program Turned 20 , 2015 .

[160]  R. Ruoff,et al.  Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage , 2015, Science.

[161]  Jusef Hassoun,et al.  Transition metal oxide-carbon composites as conversion anodes for sodium-ion battery , 2015 .

[162]  Jung-Soo Lee,et al.  Recent Advances in Lithium Sulfide Cathode Materials and Their Use in Lithium Sulfur Batteries , 2015 .

[163]  Zhian Zhang,et al.  Hierarchical MoSe2 Nanosheets/Reduced Graphene Oxide Composites as Anodes for Lithium‐Ion and Sodium‐Ion Batteries with Enhanced Electrochemical Performance , 2015 .

[164]  Majid Beidaghi,et al.  Two-Dimensional, Ordered, Double Transition Metals Carbides (MXenes). , 2015, ACS nano.

[165]  Tao Liu,et al.  Cycling Li-O2 batteries via LiOH formation and decomposition , 2015, Science.

[166]  Seok-Gwang Doo,et al.  The High Performance of Crystal Water Containing Manganese Birnessite Cathodes for Magnesium Batteries. , 2015, Nano letters.

[167]  Yunhui Huang,et al.  Nanostructured Mo-based electrode materials for electrochemical energy storage. , 2015, Chemical Society reviews.

[168]  Pierre-Louis Taberna,et al.  Two-Dimensional Vanadium Carbide (MXene) as Positive Electrode for Sodium-Ion Capacitors. , 2015, The journal of physical chemistry letters.

[169]  Kai Cui,et al.  Peanut shell hybrid sodium ion capacitor with extreme energy–power rivals lithium ion capacitors , 2015 .

[170]  George Crabtree,et al.  Perspective: The energy-storage revolution , 2015, Nature.

[171]  Jun Liu,et al.  Facile synthesis of P2-type Na0.4Mn0.54Co0.46O2 as a high capacity cathode material for sodium-ion batteries , 2015 .

[172]  D. Dubal,et al.  Hybrid energy storage: the merging of battery and supercapacitor chemistries. , 2015, Chemical Society reviews.

[173]  Zhichuan J. Xu,et al.  Recent developments in electrode materials for sodium-ion batteries , 2015 .

[174]  Kai Zhang,et al.  Recent Advances and Prospects of Cathode Materials for Sodium‐Ion Batteries , 2015, Advanced materials.

[175]  Yan Yao,et al.  Enhancing sodium-ion battery performance with interlayer-expanded MoS2–PEO nanocomposites , 2015 .

[176]  Lifang Jiao,et al.  Update on anode materials for Na-ion batteries , 2015 .

[177]  Yi Xie,et al.  Ultrathin two-dimensional inorganic materials: new opportunities for solid state nanochemistry. , 2015, Accounts of chemical research.

[178]  Xiulei Ji,et al.  Na+ intercalation pseudocapacitance in graphene-coupled titanium oxide enabling ultra-fast sodium storage and long-term cycling , 2015, Nature Communications.

[179]  R. Ma,et al.  Organization of Artificial Superlattices Utilizing Nanosheets as a Building Block and Exploration of Their Advanced Functions , 2015 .

[180]  Lele Peng,et al.  Intercalation Pseudocapacitance in Ultrathin VOPO4 Nanosheets: Toward High-Rate Alkali-Ion-Based Electrochemical Energy Storage. , 2016, Nano letters.

[181]  Y. Gogotsi,et al.  MoS2 Nanosheets Vertically Aligned on Carbon Paper: A Freestanding Electrode for Highly Reversible Sodium‐Ion Batteries , 2016 .