X-ray-induced radiophotodynamic therapy (RPDT) using lanthanide micelles: Beyond depth limitations

[1]  Lun Ma,et al.  A new X-ray activated nanoparticle photosensitizer for cancer treatment. , 2014, Journal of biomedical nanotechnology.

[2]  Timothy Solberg,et al.  X-ray excited ZnS:Cu,Co afterglow nanoparticles for photodynamic activation , 2014 .

[3]  Muriel Barberi-Heyob,et al.  X-ray-Induced singlet oxygen activation with nanoscintillator-coupled porphyrins , 2013 .

[4]  Éva Tóth,et al.  The Chemistry of Contrast Agents in Medical Magnetic Resonance Imaging , 2013 .

[5]  Giorgio Russolillo,et al.  Partial least squares algorithms and methods , 2013 .

[6]  Zhuxian Zhou,et al.  Gadolinium-based contrast agents for magnetic resonance cancer imaging. , 2013, Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology.

[7]  N. Hosmane,et al.  Boron and Gadolinium Neutron Capture Therapy for Cancer Treatment , 2012 .

[8]  S. Petoud,et al.  Pyridine-based lanthanide complexes combining MRI and NIR luminescence activities. , 2012, Chemistry.

[9]  Igor L. Medintz,et al.  Spatiotemporal multicolor labeling of individual cells using peptide-functionalized quantum dots and mixed delivery techniques. , 2011, Journal of the American Chemical Society.

[10]  Nico Stuurman,et al.  Computer Control of Microscopes Using µManager , 2010, Current protocols in molecular biology.

[11]  Jin Xie,et al.  Nanoparticle-based theranostic agents. , 2010, Advanced drug delivery reviews.

[12]  Frank Wien,et al.  Synchrotron UV Fluorescence Microscopy Uncovers New Probes in Cells and Tissues , 2010, Microscopy and Microanalysis.

[13]  S. Eliseeva,et al.  Lanthanide Luminescence for Functional Materials and Bio‐Sciences , 2010 .

[14]  M. Dahan,et al.  Probing cellular events, one quantum dot at a time , 2010, Nature Methods.

[15]  Deepthy Menon,et al.  Folate receptor targeted, rare-earth oxide nanocrystals for bi-modal fluorescence and magnetic imaging of cancer cells. , 2010, Biomaterials.

[16]  S. Petoud,et al.  Hydrophobic chromophore cargo in micellar structures: a different strategy to sensitize lanthanide cations. , 2010, Chemical communications.

[17]  Daniel Zerbib,et al.  DISCO: a low-energy multipurpose beamline at synchrotron SOLEIL. , 2009, Journal of synchrotron radiation.

[18]  P. Agostinis,et al.  In vitro study of the photocytotoxicity of bathochromically-shifted hypericin derivatives. , 2009, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[19]  S. L. Westcott,et al.  X-ray luminescence of LaF3:Tb3+ and LaF3: Ce3+,Tb3+ water-soluble nanoparticles , 2008 .

[20]  A. Joly,et al.  Investigation of water-soluble x-ray luminescence nanoparticles for photodynamic activation , 2008 .

[21]  J. Mikes,et al.  High Level of Low‐density Lipoprotein Receptors Enhance Hypericin Uptake by U‐87 MG Cells in the Presence of LDL , 2007, Photochemistry and photobiology.

[22]  R. Blyth,et al.  X-ray Excited Optical Luminescence Studies of ZnO and Eu-Doped ZnO Nanostructures , 2007 .

[23]  N. Zhang,et al.  Influence of rare earth elements (Sc, La, Gd and Lu) on the luminescent properties of green phosphor Y2SiO5:Ce,Tb , 2007 .

[24]  Feng Wang,et al.  Facile synthesis of water-soluble LaF3 : Ln(3+) nanocrystals , 2006 .

[25]  J. Bünzli,et al.  Taking advantage of luminescent lanthanide ions. , 2005, Chemical Society reviews.

[26]  M. Réfrégiers,et al.  Fluorescence Spectroscopic Study of Hypericin-photosensitized Oxidation of Low-density Lipoproteins , 2005, Photochemistry and photobiology.

[27]  Martinus H V Werts,et al.  Making sense of Lanthanide Luminescence , 2005, Science progress.

[28]  Stephen Faulkner,et al.  Lanthanide Complexes for Luminescence Imaging Applications , 2005 .

[29]  Robert Langer,et al.  Small-scale systems for in vivo drug delivery , 2003, Nature Biotechnology.

[30]  K. Okkenhaug,et al.  Firefly luciferin-activated rose bengal: in vitro photodynamic therapy by intracellular chemiluminescence in transgenic NIH 3T3 cells. , 2003, Cancer research.

[31]  P. Couvreur,et al.  Nanoparticles in cancer therapy and diagnosis. , 2002, Advanced drug delivery reviews.

[32]  Toward the Molecular Flashlight: Preparation, Properties, and Photophysics of a Hypericin–luciferin Tethered Molecule ¶ , 2002, Photochemistry and photobiology.

[33]  R. Lauffer,et al.  Gadolinium(III) Chelates as MRI Contrast Agents: Structure, Dynamics, and Applications , 1999 .

[34]  R. Lauffer,et al.  Gadolinium(III) Chelates as MRI Contrast Agents: Structure, Dynamics, and Applications. , 1999, Chemical reviews.

[35]  S. Nie,et al.  Quantum dot bioconjugates for ultrasensitive nonisotopic detection. , 1998, Science.

[36]  D. Balding,et al.  HLA Sequence Polymorphism and the Origin of Humans , 2006 .

[37]  S. Carpenter,et al.  Chemiluminescent activation of the antiviral activity of hypericin: a molecular flashlight. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[38]  T. Dougherty Photodynamic therapy. , 1993, Photochemistry and photobiology.

[39]  J. Chrysochoos Fluorescence enhancement of Eu3+ by Tb3+ in dimethylsulfoxide (DMSO) , 1974 .