Demagnetizing Factors for a Hollow Sphere
暂无分享,去创建一个
Jordi Prat-Camps | Carles Navau | Alvaro Sanchez | C. Navau | Alvaro Sanchez | Du-Xing Chen | Du-Xing Chen | J. Prat‐Camps
[1] C. Ragusa,et al. Computation of Demagnetization Tensors by Utilizing Fourier Properties , 2014, IEEE Transactions on Magnetics.
[2] H. London,et al. The electromagnetic equations of the supraconductor , 1935 .
[3] Fedor Gömöry,et al. Experimental Realization of a Magnetic Cloak , 2012, Science.
[4] A. Konrad,et al. Demagnetizing Factors for Nonuniform Nonlinear Cylinders and Rectangular Prisms , 2008, IEEE Transactions on Magnetics.
[5] Enric Pardo,et al. Demagnetizing factors of rectangular prisms and ellipsoids , 2002 .
[6] Magnetometric Demagnetizing Factors for Various Shapes of Rotational Symmetry , 2009, IEEE Transactions on Magnetics.
[7] Markus Gusenbauer,et al. Fast stray field computation on tensor grids , 2011, J. Comput. Phys..
[8] M. Graef,et al. Demagnetization factors for cylindrical shells and related shapes , 2009 .
[9] A. Sanchez,et al. Exact Analytical Demagnetizing Factors for Long Hollow Cylinders in Transverse Field , 2012, IEEE Magnetics Letters.
[10] Internal field of a hollow dielectric ellipsoid: the amplification effect , 2002 .
[11] J. Osborn. Demagnetizing Factors of the General Ellipsoid , 1945 .
[12] Lukas Exl,et al. Numerical methods for the stray-field calculation: A comparison of recently developed algorithms , 2012, 1204.4302.
[13] A. Hernando,et al. Transverse demagnetizing factors of long rectangular bars: I. Analytical expressions for extreme values of susceptibility , 2002 .
[14] E. Pardo,et al. Transverse demagnetizing factors of long rectangular bars. II. Numerical calculations for arbitrary susceptibility , 2002 .