CAM-chem: description and evaluation of interactive atmospheric chemistry in CESM

The paper gives an overview of the atmospheric chemistry component of the Community Atmosphere Model (CAM-Chem). The paper consist of two parts: (i) an overview of the chemical schemes and the chemistry-specific parameterisations and (ii) a comprehensive evaluation of the performance of CAM-Chem. For the evaluation CAMCHem is compared against ozone-sondes, ozone-total columns retrievals, air-craftobservations from INTEX A & B and global surface CO and aerosol measurements. The evaluation is carried out for three different model configuration, which use either on-line simulated meteorological data or off-line data from the GEOS-5 and MERRA C1043

[1]  P. Palmer,et al.  Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature) , 2006 .

[2]  Rolando R. Garcia,et al.  Simulation of secular trends in the middle atmosphere, 1950–2003 , 2007 .

[3]  William C. Malm,et al.  Spatial and monthly trends in speciated fine particle concentration in the United States , 2004 .

[4]  N. Mahowald,et al.  Change in atmospheric mineral aerosols in response to climate: Last glacial period, preindustrial, modern, and doubled carbon dioxide climates , 2006 .

[5]  Richard G. Derwent,et al.  Multimodel simulations of carbon monoxide: Comparison with observations and projected near‐future changes , 2006 .

[6]  Jean-Francois Lamarque,et al.  Simulated lower stratospheric trends between 1970 and 2005: Identifying the role of climate and composition changes , 2008 .

[7]  J. Lamarque,et al.  A global simulation of tropospheric ozone and related tracers: Description and evaluation of MOZART, version 2 , 2001 .

[8]  Veronika Eyring,et al.  SPARC Report on the Evaluation of Chemistry-Climate Models , 2010 .

[9]  J. Lamarque,et al.  Description and evaluation of the Model for Ozone and Related chemical Tracers, version 4 (MOZART-4) , 2009 .

[10]  K. Calvin,et al.  The RCP greenhouse gas concentrations and their extensions from 1765 to 2300 , 2011 .

[11]  Merritt N. Deeter,et al.  The MOPITT version 4 CO product: Algorithm enhancements, validation, and long‐term stability , 2010 .

[12]  A. Zuber,et al.  A multi‐model study of the hemispheric transport and deposition of oxidised nitrogen , 2008 .

[13]  Martyn P. Chipperfield,et al.  Chemistry-climate model simulations of spring Antarctic ozone , 2010 .

[14]  O. Wild,et al.  Diagnosing the stratosphere-to-troposphere flux of ozone in a chemistry transport model , 2005 .

[15]  Douglas Lowe,et al.  Polar stratospheric cloud microphysics and chemistry , 2008 .

[16]  Christine Wiedinmyer,et al.  Simulating biogenic volatile organic compound emissions in the Community Climate System Model , 2003 .

[17]  Richard G. Derwent,et al.  Simulation of Global Hydrogen Levels Using a Lagrangian Three-Dimensional Model , 2003 .

[18]  Jos Lelieveld,et al.  Gas/aerosol partitioning: 1. A computationally efficient model , 2002 .

[19]  B. Hannegan,et al.  Stratospheric ozone in 3-D models : A simple chemistry and the cross-tropopause flux , 2000 .

[20]  Philip B. Russell,et al.  Overview of the Summer 2004 Intercontinental Chemical Transport Experiment–North America (INTEX-A) , 2006 .

[21]  P. Rasch,et al.  Impact of the summer 2004 Alaska fires on top of the atmosphere clear-sky radiation fluxes , 2008 .

[22]  Paul Ginoux,et al.  Assessment of the global impact of aerosols on tropospheric oxidants , 2005 .

[23]  Christine Wiedinmyer,et al.  The effects of global changes upon regional ozone pollution in the United States , 2008 .

[24]  R. Andres,et al.  A time‐averaged inventory of subaerial volcanic sulfur emissions , 1998 .

[25]  Michael B. McElroy,et al.  Three-dimensional climatological distribution of tropospheric OH: Update and evaluation , 2000 .

[26]  Guy P. Brasseur,et al.  Effects of aerosols on tropospheric oxidants: A global model study , 2001 .

[27]  T. Diehl,et al.  Sensitivity of chemical tracers to meteorological parameters in the MOZART-3 chemical transport model , 2007 .

[28]  Sander Houweling,et al.  The impact of nonmethane hydrocarbon compounds on tropospheric photochemistry , 1998 .

[29]  M. Wesely,et al.  SO2, sulfate and HNO3 deposition velocities computed using regional landuse and meteorological data , 1986 .

[30]  C. Liousse,et al.  Construction of a 1° × 1° fossil fuel emission data set for carbonaceous aerosol and implementation and radiative impact in the ECHAM4 model , 1999 .

[31]  William H. Brune,et al.  Chemistry and transport of pollution over the Gulf of Mexico and the Pacific: spring 2006 INTEX-B campaign overview and first results , 2009 .

[32]  Dylan B. A. Jones,et al.  The vertical distribution of ozone instantaneous radiative forcing from satellite and chemistry climate models , 2011 .

[33]  D. Hauglustaine,et al.  Data composites of airborne observations of tropospheric ozone and its precursors , 2000 .

[34]  C. N. Hewitt,et al.  A global model of natural volatile organic compound emissions , 1995 .

[35]  Veronika Eyring,et al.  Multimodel climate and variability of the stratosphere , 2011 .

[36]  Philip Stier,et al.  DMS cycle in the marine ocean-atmosphere system – a global model study , 2005 .

[37]  Jean-Francois Lamarque,et al.  Sea-salt aerosol response to climate change: Last Glacial Maximum, preindustrial, and doubled carbon dioxide climates , 2006 .

[38]  P. Lauritzen,et al.  Atmospheric Transport Schemes: Desirable Properties and a Semi-Lagrangian View on Finite-Volume Discretizations , 2011 .

[39]  J. Lamarque,et al.  Multimodel ensemble simulations of present-day and near-future tropospheric ozone , 2006 .

[40]  T. Chase,et al.  Representing a new MODIS consistent land surface in the Community Land Model (CLM 3.0) , 2007 .

[41]  Philip J. Rasch,et al.  Characteristics of Atmospheric Transport Using Three Numerical Formulations for Atmospheric Dynamics in a Single GCM Framework , 2006 .

[42]  Philip Cameron-Smith,et al.  IMPACT, the LLNL 3‐D global atmospheric chemical transport model for the combined troposphere and stratosphere: Model description and analysis of ozone and other trace gases , 2004 .

[43]  H. Akimoto,et al.  An Asian emission inventory of anthropogenic emission sources for the period 1980-2020 , 2007 .

[44]  J. Randerson,et al.  The Impact of Boreal Forest Fire on Climate Warming , 2006, Science.

[45]  Michael Schulz,et al.  A multi-model analysis of vertical ozone profiles , 2009 .

[46]  Michael J Prather,et al.  Intercontinental impacts of ozone pollution on human mortality. , 2009, Environmental science & technology.

[47]  James E. Dye,et al.  Comments on the parameterization of lightning-produced NO in global chemistry-transport models , 2005 .

[48]  S. Madronich Photodissociation in the atmosphere: 1. Actinic flux and the effects of ground reflections and clouds , 1987 .

[49]  Susan Solomon,et al.  Impact of Changes in Climate and Halocarbons on Recent Lower Stratosphere Ozone and Temperature Trends , 2010 .

[50]  Mark Lawrence,et al.  Interhemispheric di ff erences in the chemical characteristics of the Indian Ocean aerosol during INDOEX , 2002 .

[51]  D. Rind,et al.  A simple lightning parameterization for calculating global lightning distributions , 1992 .

[52]  Paul Ginoux,et al.  Response of a coupled chemistry‐climate model to changes in aerosol emissions: Global impact on the hydrological cycle and the tropospheric burdens of OH, ozone, and NOx , 2005 .

[53]  R. P. Lowe,et al.  Atmospheric Chemistry Experiment (ACE): Mission overview. , 2005 .

[54]  Mian Chin,et al.  A multi-model assessment of pollution transport to the Arctic , 2008 .

[55]  John H. Seinfeld,et al.  Interactions between tropospheric chemistry and aerosols in a unified general circulation model , 2003 .

[56]  Bernd Kärcher,et al.  Formation of nitric acid/water ice particles in cirrus clouds , 2006 .

[57]  Rob MacKenzie,et al.  Review of Polar Stratospheric Cloud Microphysics and Chemistry. , 2008 .

[58]  David S. Lee,et al.  Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application , 2010 .

[59]  S. Solberg,et al.  Atmospheric Chemistry and Physics , 2002 .

[60]  W. Collins,et al.  The Formulation and Atmospheric Simulation of the Community Atmosphere Model Version 3 (CAM3) , 2006 .

[61]  D. Streets,et al.  A technology‐based global inventory of black and organic carbon emissions from combustion , 2004 .

[62]  Jean-Francois Lamarque,et al.  Understanding the drivers for the 20th century change of hydrogen peroxide in Antarctic ice‐cores , 2011 .

[63]  Michael J. Prather,et al.  Tropospheric O3 from photolysis of O2 , 2009 .

[64]  Haruo Tsuruta,et al.  Carbon monoxide, hydrogen, and methane uptake by soils in a temperate arable field and a forest , 2000 .

[65]  P. Rasch,et al.  Representation of Clouds and Precipitation Processes in the Community Atmosphere Model Version 3 (CAM3) , 2006 .

[66]  Jennifer A. Logan,et al.  Trends in the vertical distribution of ozone: An analysis of ozonesonde data , 1994 .

[67]  James J. Hack,et al.  Simulation of the Global Hydrological Cycle in the CCSM Community Atmosphere Model Version 3 (CAM3): Mean Features , 2006 .

[68]  M. Wesely,et al.  Modification of coded parametrizations of surface resistances to gaseous dry deposition , 1996 .

[69]  D. Wuebbles,et al.  Global model simulation of summertime U.S. ozone diurnal cycle and its sensitivity to PBL mixing, spatial resolution, and emissions , 2008 .

[70]  William J. Collins,et al.  Multimodel estimates of intercontinental source-receptor relationships for ozone pollution , 2008 .

[71]  J. Seinfeld,et al.  Global distribution and climate forcing of carbonaceous aerosols , 2002 .

[72]  W. Collins,et al.  The Community Climate System Model Version 3 (CCSM3) , 2006 .

[73]  Jessica L. Neu,et al.  Toward a more physical representation of precipitation scavenging in global chemistry models: cloud overlap and ice physics and their impact on tropospheric ozone , 2011 .

[74]  Philip J. Rasch,et al.  Representations of transport, convection, and the hydrologic cycle in chemical transport models : Implications for the modeling of short-lived and soluble species , 1997 .

[75]  Philip J. Rasch,et al.  MOZART, a global chemical transport model for ozone and related chemical tracers: 1. Model description , 1998 .

[76]  Eiko Nemitz,et al.  Eddy covariance fluxes of peroxyacetyl nitrates (PANs) and NOy to a coniferous forest , 2006 .

[77]  Stephen A. Klein,et al.  A parametrization of the effects of cloud and precipitation overlap for use in general‐circulation models , 2000 .

[78]  Mark A. Taylor,et al.  High-Resolution Mesh Convergence Properties and Parallel Efficiency of a Spectral Element Atmospheric Dynamical Core , 2005, Int. J. High Perform. Comput. Appl..

[79]  J. Penner,et al.  NOx from lightning 1. Global distribution based on lightning physics , 1997 .

[80]  Oliver Wild,et al.  Global tropospheric ozone modeling: Quantifying errors due to grid resolution , 2006 .

[81]  Peter F. Bernath,et al.  Evaluation of ACE‐FTS and OSIRIS Satellite retrievals of ozone and nitric acid in the tropical upper troposphere: Application to ozone production efficiency , 2011 .

[82]  M. Wesely Parameterization of surface resistances to gaseous dry deposition in regional-scale numerical models , 1989 .

[83]  N. McFarlane,et al.  Sensitivity of Climate Simulations to the Parameterization of Cumulus Convection in the Canadian Climate Centre General Circulation Model , 1995, Data, Models and Analysis.

[84]  Jean-Francois Lamarque,et al.  Predicted change in global secondary organic aerosol concentrations in response to future climate, emissions, and land use change , 2008 .

[85]  J. Randerson,et al.  Interannual variability in global biomass burning emissions from 1997 to 2004 , 2006 .

[86]  Albert A. M. Holtslag,et al.  Local Versus Nonlocal Boundary-Layer Diffusion in a Global Climate Model , 1993 .

[87]  S. K. Akagi,et al.  The Fire INventory from NCAR (FINN): a high resolution global model to estimate the emissions from open burning , 2010 .

[88]  Russell K. Monson,et al.  The uptake of gaseous organic nitrogen by leaves: A significant global nitrogen transfer process , 2003 .

[89]  Martyn P. Chipperfield,et al.  Anthropogenic forcing of the Northern Annular Mode in CCMVal-2 models , 2010 .

[90]  Leon D. Rotstayn,et al.  Tropical Rainfall Trends and the Indirect Aerosol Effect , 2002 .

[91]  B. Hicks,et al.  A review of the current status of knowledge on dry deposition , 2000 .

[92]  Georgiy L. Stenchikov,et al.  Lightning-generated NOX and its impact on tropospheric ozone production: A three-dimensional modeling study of a Stratosphere- Troposphere Experiment: Radiation, Aerosols and Ozone (STERAO-A) thunderstorm , 2005 .

[93]  Daniel A. Lack,et al.  Seasonal variability of secondary organic aerosol: A global modeling study , 2004 .