Classifying Very High-Dimensional and Large-Scale Multi-class Image Datasets with Latent-lSVM

We propose a new learning algorithm of latent local support vector machines (SVM), called Latent-lSVM for effectively classifying very-high-dimensional, large-scale multiclass image datasets. The common framework of image classification tasks using the Scale-Invariant Feature Transform method (SIFT), the Bag-of-visual-Words (BoW), leads to hard classification problem with thousands of dimensions, hundreds of classes. Our Latent-lSVM algorithm performs these complex tasks into two main steps. The first one is to use latent Dirichlet allocation (LDA) for assigning the image to some topics (clusters) with the corresponding probabilities. This aim is to reduce the number of classes, the number of datapoints in the cluster compared to the full dataset, followed by the second one: to learn a SVM model for each cluster to non-linearly classify the data locally. The numerical test results on eight real datasets show that the Latent-lSVM algorithm achieves very high accuracy compared to state-of-the-art algorithms. An example of its effectiveness is given with an accuracy of 97.87% obtained in the classification of fingerprint dataset having 5000 dimensions into 559 classes.

[1]  Vojislav Kecman,et al.  Adaptive local hyperplane classification , 2008, Neurocomputing.

[2]  David G. Lowe,et al.  Object recognition from local scale-invariant features , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[3]  Hermann Ney,et al.  Bag-of-visual-words models for adult image classification and filtering , 2008, 2008 19th International Conference on Pattern Recognition.

[4]  J. MacQueen Some methods for classification and analysis of multivariate observations , 1967 .

[5]  Pascal Vincent,et al.  K-Local Hyperplane and Convex Distance Nearest Neighbor Algorithms , 2001, NIPS.

[6]  Cordelia Schmid,et al.  Scale & Affine Invariant Interest Point Detectors , 2004, International Journal of Computer Vision.

[7]  Scott Shenker,et al.  Spark: Cluster Computing with Working Sets , 2010, HotCloud.

[8]  Michael I. Jordan,et al.  Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..

[9]  Léon Bottou,et al.  Local Learning Algorithms , 1992, Neural Computation.

[10]  Matthijs C. Dorst Distinctive Image Features from Scale-Invariant Keypoints , 2011 .

[11]  François Poulet,et al.  High Dimensional Image Categorization , 2010, ADMA.

[12]  Pietro Perona,et al.  A Bayesian hierarchical model for learning natural scene categories , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[13]  Laura Schweitzer,et al.  Advances In Kernel Methods Support Vector Learning , 2016 .

[14]  Thanh-Nghi Do,et al.  Classifying many-class high-dimensional fingerprint datasets using random forest of oblique decision trees , 2015, Vietnam Journal of Computer Science.

[15]  Annie Morin,et al.  Une nouvelle approche pour la recherche d'images par le contenu , 2008, EGC.

[16]  Geoffrey E. Hinton,et al.  Adaptive Mixtures of Local Experts , 1991, Neural Computation.

[17]  Samy Bengio,et al.  A Parallel Mixture of SVMs for Very Large Scale Problems , 2001, Neural Computation.

[18]  Jason Weston,et al.  Support vector machines for multi-class pattern recognition , 1999, ESANN.

[19]  Vladimir Vapnik,et al.  Principles of Risk Minimization for Learning Theory , 1991, NIPS.

[20]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[21]  Ulrich H.-G. Kreßel,et al.  Pairwise classification and support vector machines , 1999 .

[22]  Yann Guermeur,et al.  SVM Multiclasses, Théorie et Applications , 2007 .

[23]  John C. Platt,et al.  Fast training of support vector machines using sequential minimal optimization, advances in kernel methods , 1999 .

[24]  Andrew McCallum,et al.  Rethinking LDA: Why Priors Matter , 2009, NIPS.

[25]  John Langford,et al.  Cover trees for nearest neighbor , 2006, ICML.

[26]  Yoav Freund,et al.  A decision-theoretic generalization of on-line learning and an application to boosting , 1995, EuroCOLT.

[27]  Thomas Hofmann,et al.  Probabilistic latent semantic indexing , 1999, SIGIR '99.

[28]  Chih-Jen Lin,et al.  A Practical Guide to Support Vector Classication , 2008 .

[29]  Léon Bottou,et al.  Local Algorithms for Pattern Recognition and Dependencies Estimation , 1993, Neural Computation.

[30]  Jianxin Wu,et al.  Power mean SVM for large scale visual classification , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[31]  Chia-Hua Ho,et al.  Recent Advances of Large-Scale Linear Classification , 2012, Proceedings of the IEEE.

[32]  François Poulet,et al.  Random Local SVMs for Classifying Large Datasets , 2015, FDSE.

[33]  Radford M. Neal Pattern Recognition and Machine Learning , 2007, Technometrics.

[34]  Andrew Zisserman,et al.  Scene Classification Via pLSA , 2006, ECCV.

[35]  Leo Breiman,et al.  Classification and Regression Trees , 1984 .

[36]  Andrew Zisserman,et al.  Video Google: a text retrieval approach to object matching in videos , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[37]  Nello Cristianini,et al.  An Introduction to Support Vector Machines and Other Kernel-based Learning Methods , 2000 .

[38]  Fu Chang,et al.  Decision Tree as an Accelerator for Support Vector Machines , 2012 .

[39]  Jiawei Han,et al.  Clustered Support Vector Machines , 2013, AISTATS.

[40]  Fei-Fei Li,et al.  ImageNet: A large-scale hierarchical image database , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[41]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[42]  Enrico Blanzieri,et al.  Fast and Scalable Local Kernel Machines , 2010, J. Mach. Learn. Res..

[43]  Chi-Jen Lu,et al.  Tree Decomposition for Large-Scale SVM Problems , 2010, 2010 International Conference on Technologies and Applications of Artificial Intelligence.

[44]  Gregor Heinrich Parameter estimation for text analysis , 2009 .

[45]  อนิรุธ สืบสิงห์,et al.  Data Mining Practical Machine Learning Tools and Techniques , 2014 .

[46]  François Poulet,et al.  Large scale classifiers for visual classification tasks , 2014, Multimedia Tools and Applications.

[47]  Yoav Freund,et al.  A decision-theoretic generalization of on-line learning and an application to boosting , 1997, EuroCOLT.

[48]  Thanh-Nghi Do,et al.  Non-linear Classification of Massive Datasets with a Parallel Algorithm of Local Support Vector Machines , 2015, ICCSAMA.

[49]  Vladimir Cherkassky,et al.  The Nature Of Statistical Learning Theory , 1997, IEEE Trans. Neural Networks.

[50]  Fei-Fei Li,et al.  What Does Classifying More Than 10, 000 Image Categories Tell Us? , 2010, ECCV.

[51]  Thanh-Nghi Do,et al.  Parallel multiclass stochastic gradient descent algorithms for classifying million images with very-high-dimensional signatures into thousands classes , 2014, Vietnam Journal of Computer Science.

[52]  Jitendra Malik,et al.  SVM-KNN: Discriminative Nearest Neighbor Classification for Visual Category Recognition , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[53]  J. Ross Quinlan,et al.  C4.5: Programs for Machine Learning , 1992 .

[54]  D. Desbois L'analyse des correspondances avec SPSS pour Windows , 1996 .

[55]  Chih-Jen Lin,et al.  LIBLINEAR: A Library for Large Linear Classification , 2008, J. Mach. Learn. Res..

[56]  Aiko M. Hormann,et al.  Programs for Machine Learning. Part I , 1962, Inf. Control..

[57]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[58]  Zhiyuan Liu,et al.  PLDA+: Parallel latent dirichlet allocation with data placement and pipeline processing , 2011, TIST.