Extended continuum configurational bias Monte Carlo methods for simulation of flexible molecules

The continuum configurational bias (CCB) Monte Carlo method has been extended to perform elementary moves that involve the rearrangement of inner segments of flexible chains. When regrowing inner sites, the continuity with the rest of the chain is ensured by disregarding those configurations that would imply an unrealistic elongation of the bonds once the chain is reconstructed. The formalism presented here also allows the simulation of branched chains and crosslinked‐network structures. The Monte Carlo elementary moves proposed in this work are used in conjunction with an alternative method of preferential sampling in which the segments to be rearranged are chosen from a preselected region of space. The performance and capabilities of the new moves are compared to those of standard CCB and crank‐shaft algorithms for simulation of melts and solutions of hard‐sphere chains at high densities. Our results indicate that the methods presented here provide a fast relaxation of the bond orientation and the end‐t...

[1]  R. Roe Computer simulation of polymers , 1991 .

[2]  N. G. Almarza,et al.  Monte Carlo simulation of liquid n-alkanes. I: Intramolecular structure and thermodynamics , 1992 .

[3]  Daan Frenkel,et al.  Configurational bias Monte Carlo: a new sampling scheme for flexible chains , 1992 .

[4]  J. I. Siepmann,et al.  A method for the direct calculation of chemical potentials for dense chain systems , 1990 .

[5]  Juan J. de Pablo,et al.  Estimation of the chemical potential of chain molecules by simulation , 1992 .

[6]  D. Frenkel,et al.  Phase separation in binary hard-core mixtures , 1994 .

[7]  M. Kalos,et al.  Molecular dynamics of polymeric systems , 1979 .

[8]  I. R. Mcdonald,et al.  Theory of simple liquids , 1998 .

[9]  D. Theodorou,et al.  A concerted rotation algorithm for atomistic Monte Carlo simulation of polymer melts and glasses , 1993 .

[10]  D. Y. Yoon,et al.  Off‐lattice Monte Carlo simulations of polymer melts confined between two plates , 1988 .

[11]  C. Hall,et al.  Generalized flory equation of state for hard chain—hard monomer mixtures of unequal segment diameter , 1994 .

[12]  Walter H. Stockmayer,et al.  Monte Carlo Calculations on the Dynamics of Polymers in Dilute Solution , 1962 .

[13]  J. H. Weiner,et al.  Contribution of covalent bond force to pressure in polymer melts , 1989 .

[14]  J. Prausnitz,et al.  Equation of State for Mixtures of Hard-Sphere Chains Including Copolymers , 1994 .

[15]  M. Wertheim,et al.  Thermodynamic perturbation theory of polymerization , 1987 .

[16]  A. W. Rosenbluth,et al.  MONTE CARLO CALCULATION OF THE AVERAGE EXTENSION OF MOLECULAR CHAINS , 1955 .

[17]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[18]  Berend Smit,et al.  Novel scheme to study structural and thermal properties of continuously deformable molecules , 1992 .

[19]  Walter G Chapman,et al.  A new equation of state for hard chain molecules , 1994 .

[20]  S. Sandler,et al.  An equation of state for the hard-sphere chain fluid: theory and Monte Carlo simulation , 1994 .

[21]  G. Grest,et al.  Dynamics of entangled linear polymer melts: A molecular‐dynamics simulation , 1990 .

[22]  Jozef Bicerano,et al.  Computational modeling of polymers , 1992 .

[23]  C. Hall,et al.  Theory and simulation of hard‐chain mixtures: Equations of state, mixing properties, and density profiles near hard walls , 1991 .

[24]  Y. Chiew,et al.  Monte Carlo simulation of Lennard‐Jones chains , 1994 .

[25]  R. Dickman,et al.  High density Monte Carlo simulations of chain molecules: Bulk equation of state and density profile near walls , 1988 .

[26]  H. Kramers Het gedrag van macromoleculen in een stroomende vloeistof , 1944 .

[27]  H. Meirovitch,et al.  Computer simulation of long polymers adsorbed on a surface. I. Corrections to scaling in an ideal chain , 1988 .

[28]  G. Stell,et al.  Equations of state for hard chain molecules , 1993 .

[29]  C. Hall,et al.  Monte Carlo simulations and integral equation theory for microscopic correlations in polymeric fluids , 1992 .

[30]  Juan J. de Pablo,et al.  Simulation of polyethylene above and below the melting point , 1992 .

[31]  H. Meirovitch,et al.  Scanning method as an unbiased simulation technique and its application to the study of self-attracting random walks. , 1985, Physical review. A, General physics.

[32]  C. Hall,et al.  A new equation of state for athermal chains , 1989 .

[33]  Richard H. Boyd,et al.  An off-lattice constant-pressure simulation of liquid polymethylene , 1989 .

[34]  C. Hall,et al.  On equations of state for hard chain fluids , 1993 .

[35]  B. Forrest,et al.  Hybrid Monte Carlo simulations of dense polymer systems , 1994 .