Crystallization and nonlinear optical properties of transparent glass-ceramics with Co:Mg(Al,Ga)2O4 nanocrystals for saturable absorbers of lasers at 1.6–1.7 µm

Abstract Transparent glass-ceramics (GCs) containing nanocrystals of Co:Mg(Al,Ga) 2 O 4 spinel and Co:magnesium gallium aluminotitanate solid solutions are synthesized by secondary heat-treatments of the magnesium aluminosilicate glass nucleated by TiO 2 and doped with Ga 2 O 3 and CoO. Optical spectroscopy confirms that Co 2+ ions located in the initial glass in octahedral and tetrahedral positions, enter the Mg(Al,Ga) 2 O 4 nanocrystals predominantly in tetrahedral sites and the fraction of tetrahedrally coordinated ions increases gradually with the heat-treatment temperature. The feature of these GCs is a long-wavelength shift of the absorption band related to the 4 A 2 ( 4 F)→ 4 T 1 ( 4 F) transition of Co 2+ ions (up to ~1.67 µm) as compared with that for Co:MgAl 2 O 4 single crystals. An increase of the heat-treatment temperature from 800 to 950 °C leading to an increase of the fraction and size of spinel crystals allowed increasing the peak absorption within this band while keeping the saturation intensity within the range 0.5…0.7 J/cm 2 and the recovery time in the range 240…335 ns. The developed GCs are promising as saturable absorbers for erbium lasers emitting at 1.6–1.7 µm.

[1]  M. I. Demchuk,et al.  Co2+:LiGa5O8 saturable absorber passive Q switch for 1.34 μm Nd3+:YAlO3 and 1.54 μm Er3+:glass lasers , 2000 .

[2]  R. Kirkpatrick,et al.  Order-disorder phenomena in MgAl2O4 spinel. , 1986 .

[3]  Kyeong-Hee Lee,et al.  Magnesium- and zinc-aluminosilicate cobalt-doped glass ceramics as saturable absorbers for diode-pumped 1.3-microm laser. , 2004, Applied optics.

[4]  K. Yumashev,et al.  Stimulated emission of Co2+-doped glass–ceramics , 2007 .

[5]  Marly B. Camargo,et al.  Divalent Uranium and Cobalt Saturable Absorber Q-Switches at 1.5 μm , 1995 .

[6]  T. I. Chuvaeva,et al.  Structural states of Co(II) in β-eucryptite-based glass-ceramics nucleated with ZrO2 , 1996 .

[7]  Konstantin V. Yumashev,et al.  Development of Saturable Absorbers for Laser Passive Q‐Switching near 1.5 μm Based on Transparent Ceramic Co2+:MgAl2O4 , 2016 .

[8]  V. G. Shcherbitsky,et al.  Cr(2+):ZnSe and Co(2+):ZnSe saturable-absorber Q switches for 1.54-mum Er:glass lasers. , 1999, Optics letters.

[9]  J. Qiu,et al.  Transparent Ni2+-doped silicate glass ceramics for broadband near-infrared emission , 2008 .

[10]  T. I. Chuvaeva,et al.  On the Phase Separation and Crystallization of Glasses in the MgO–Al2O3–SiO2–TiO2 System , 2003 .

[11]  Alexander M. Malyarevich,et al.  Glass-ceramics with γ-Ga2O3:Co2+ nanocrystals: saturable absorber for 1.5–1.7 μm Er lasers , 2015 .

[12]  N. Neale,et al.  Synthesis, optical, and photocatalytic properties of cobalt mixed-metal spinel oxides Co(Al1−xGax)2O4 , 2015 .

[13]  Richard L. Gentilman,et al.  Current and Emerging Materials for 3-5 Micron IR Transmission , 1986, Optics & Photonics.

[14]  K. Spariosu,et al.  Efficient Er:YAG laser operating at 1645 and 1617 nm , 2006, IEEE Journal of Quantum Electronics.

[15]  K. Yumashev,et al.  Saturable absorbers based on tetrahedrally coordinated transition-metal ions in crystals (Review) , 2009 .

[16]  J. P. Remeika,et al.  Optical Absorption of Tetrahedral Co3+ and Co2+ in Garnets , 1967 .

[17]  Todd P. Sander,et al.  Solid Solution Effects on the Thermal Properties in the MgAl2O4–MgGa2O4 System , 2013 .

[18]  P. Thony,et al.  1.55 μm passive Q-switched microchip laser , 1998 .

[19]  D. Yuan,et al.  Preparation and optical properties of nanoscale MgAl2O4 powders doped with Co2+ ions , 2008 .

[20]  X. Cheng,et al.  Absorption and photoluminescence characteristics of Co2+:MgAl2O4 nanocrystals embedded in sol–gel derived SiO2-based glass , 2004 .

[21]  Igor A. Denisov,et al.  Nonlinear absorption properties of Co2+:MgAl2O4 crystal , 2000 .

[22]  Xinqiang Wang,et al.  Effects of Co content and annealing temperature on the structure and optical properties of CoxMg1−xAl2O4 nanoparticles , 2012 .

[23]  Tsugio Sato,et al.  Synthesis and Thermal Stability of Aluminum Titanate Solid Solutions , 1987 .

[24]  V. Pašiškevičius,et al.  Diode-Pumped Er-Yb:Glass Laser Passively Q Switched by Use of Co(2+):MgAl(2)O(4) as a Saturable Absorber. , 2000, Applied optics.

[25]  Jun Liu,et al.  Novel Raman Fiber Lasers Emitting in the U-Band With Combined Volume Bragg Gratings , 2014, IEEE Photonics Journal.

[26]  A. L. Frisillo,et al.  Lattice vibrations of MgAl2O4 spinel , 1973 .

[27]  Linda R. Pinckney,et al.  Transition element-doped crystals in glass , 2001, SPIE Optics + Photonics.

[28]  K. Yumashev,et al.  Anisotropy of nonlinear absorption in Co2+:MgAl2O4 crystal , 2007 .

[29]  K. Yumashev,et al.  Passive Q-switching of erbium glass laser by magnesium aluminosilicate sitall with cobalt ions , 2007 .

[30]  Suhuai Wei,et al.  Electronic and optical properties of CoX2O4 (X = Al, Ga, In) alloys , 2012 .

[31]  Yoshikazu Suzuki,et al.  Magnesium dititanate (MgTi2O5) with pseudobrookite structure: a review , 2011, Science and technology of advanced materials.

[32]  N. N. Posnov,et al.  Nonlinear spectroscopy and passive Q -switching operation of a Co 2+ :LaMgAl 11 O 19 crystal , 1999 .

[33]  D. W. Price,et al.  Predicting lattice parameter as a function of cation disorder in MgAl2O4 spinel , 2005 .

[34]  I. A. Denisov,et al.  Optical absorption and luminescence study of cobalt-doped magnesium aluminosilicate glass ceramics , 2002 .

[35]  J. Ferguson,et al.  Crystal‐Field Spectra of d3,7 Ions. V. Tetrahedral Co2+ in ZnAl2O4 Spinel , 1969 .

[36]  M. Dondi,et al.  Crystal structure, optical properties and colouring performance of karrooite MgTi2O5 ceramic pigments , 2007 .

[37]  Hanskarl Müller‐Buschbaum,et al.  Pseudobrookite mit weitgehend geordneter Metallverteilung: CoTi2O5, MgTi2O5 und FeTi2O5 , 1983 .

[38]  R. Roy,et al.  Order-disorder in MgAl2O4. The systems: MgAl2O4-LiAl5O8, MgAl2O4-NiCr2O4, MgAl2O4, and NiAl2O4-ZnAl2O4 , 1968 .

[39]  R. G. Turner,et al.  The distribution of nickel ions among octahedral and tetrahedral sites in NiAl2O4MgAl2O4 solid solutions , 1974 .

[40]  D. Wood,et al.  Optical Absorption Study of Co‐Doped Oxide Systems. II , 1961 .

[41]  A. V. Shestakov,et al.  Glass Ceramics Co2+ Saturable Absorber Q-switch for 1.3 - 1.6 µm spectral region , 1998 .

[42]  Larry D. Merkle,et al.  Resonant pumping and upconversion in 1.6 μm Er 3+ lasers , 2007 .

[43]  A. Baranov,et al.  Influence of CoO addition on phase separation and crystallization of glasses of the ZnO-Al2O3-SiO2-TiO2 system , 2011 .

[44]  X. Mateos,et al.  Saturable absorber: transparent glass-ceramics based on a mixture of Co:β-Zn2SiO4 and Co:ZnO nanocrystals. , 2016, Applied optics.

[45]  L. P. Sosman,et al.  Optical spectroscopy of MgGa2O4:Co2+ , 1992 .

[46]  Olga S. Dymshits,et al.  A Raman Spectroscopic Study of Phase Transformations in Titanium-Containing Magnesium Aluminosilicate Glasses , 2002 .

[47]  P. Barpanda,et al.  Chemically induced order disorder transition in magnesium aluminium spinel , 2006 .

[48]  T. I. Chuvaeva,et al.  The Influence of Nickel Oxide Additives on the Phase Separation and Crystallization of Glasses in the MgO–Al2O3–SiO2–TiO2 System , 2004 .

[49]  M. Dondi,et al.  M‐Doped Al2TiO5 (M=Cr, Mn, Co) Solid Solutions and their Use as Ceramic Pigments , 2009 .

[50]  I. A. Denisov,et al.  Nanosized glass-ceramics doped with transition metal ions: nonlinear spectroscopy and possible laser applications , 2002 .

[51]  M. Birnbaum,et al.  Co2+:ZnS and Co2+:ZnSe saturable absorber Q switches , 2000 .

[52]  Alexander M. Malyarevich,et al.  Nonlinear absorption properties of new cobalt-doped transparent glass ceramics , 2002, International Conference on Coherent and Nonlinear Optics.

[53]  Konstantin V. Yumashev,et al.  Absorption and luminescence of tetrahedral Co2+ ion in MgAl2O4 , 1993 .

[54]  R. Stalder,et al.  Phase Relations and Lattice Constants in the MgO-Al2O3-Ga2O3 System at 1550°C , 1997 .

[55]  Xavier Mateos,et al.  Structure and nonlinear optical properties of novel transparent glass-ceramics based on Co2+:ZnO nanocrystals , 2016 .

[56]  D. Yuan,et al.  Preparation of Co2+-doped MgGa2O4 nanocrystals by citrate sol–gel method , 2007 .