Crystallization and nonlinear optical properties of transparent glass-ceramics with Co:Mg(Al,Ga)2O4 nanocrystals for saturable absorbers of lasers at 1.6–1.7 µm
暂无分享,去创建一个
Xavier Mateos | Alexander M. Malyarevich | Konstantin V. Yumashev | Olga S. Dymshits | Pavel Loiko | A. A. Zhilin | K. V. Bogdanov | I. P. Alekseeva | N. A. Skoptsov | X. Mateos | P. Loiko | K. Yumashev | A. Zhilin | K. Bogdanov | I. Alekseeva | O. Dymshits | M. Tsenter | A. Malyarevich | M. Tsenter | N. Skoptsov
[1] M. I. Demchuk,et al. Co2+:LiGa5O8 saturable absorber passive Q switch for 1.34 μm Nd3+:YAlO3 and 1.54 μm Er3+:glass lasers , 2000 .
[2] R. Kirkpatrick,et al. Order-disorder phenomena in MgAl2O4 spinel. , 1986 .
[3] Kyeong-Hee Lee,et al. Magnesium- and zinc-aluminosilicate cobalt-doped glass ceramics as saturable absorbers for diode-pumped 1.3-microm laser. , 2004, Applied optics.
[4] K. Yumashev,et al. Stimulated emission of Co2+-doped glass–ceramics , 2007 .
[5] Marly B. Camargo,et al. Divalent Uranium and Cobalt Saturable Absorber Q-Switches at 1.5 μm , 1995 .
[6] T. I. Chuvaeva,et al. Structural states of Co(II) in β-eucryptite-based glass-ceramics nucleated with ZrO2 , 1996 .
[7] Konstantin V. Yumashev,et al. Development of Saturable Absorbers for Laser Passive Q‐Switching near 1.5 μm Based on Transparent Ceramic Co2+:MgAl2O4 , 2016 .
[8] V. G. Shcherbitsky,et al. Cr(2+):ZnSe and Co(2+):ZnSe saturable-absorber Q switches for 1.54-mum Er:glass lasers. , 1999, Optics letters.
[9] J. Qiu,et al. Transparent Ni2+-doped silicate glass ceramics for broadband near-infrared emission , 2008 .
[10] T. I. Chuvaeva,et al. On the Phase Separation and Crystallization of Glasses in the MgO–Al2O3–SiO2–TiO2 System , 2003 .
[11] Alexander M. Malyarevich,et al. Glass-ceramics with γ-Ga2O3:Co2+ nanocrystals: saturable absorber for 1.5–1.7 μm Er lasers , 2015 .
[12] N. Neale,et al. Synthesis, optical, and photocatalytic properties of cobalt mixed-metal spinel oxides Co(Al1−xGax)2O4 , 2015 .
[13] Richard L. Gentilman,et al. Current and Emerging Materials for 3-5 Micron IR Transmission , 1986, Optics & Photonics.
[14] K. Spariosu,et al. Efficient Er:YAG laser operating at 1645 and 1617 nm , 2006, IEEE Journal of Quantum Electronics.
[15] K. Yumashev,et al. Saturable absorbers based on tetrahedrally coordinated transition-metal ions in crystals (Review) , 2009 .
[16] J. P. Remeika,et al. Optical Absorption of Tetrahedral Co3+ and Co2+ in Garnets , 1967 .
[17] Todd P. Sander,et al. Solid Solution Effects on the Thermal Properties in the MgAl2O4–MgGa2O4 System , 2013 .
[18] P. Thony,et al. 1.55 μm passive Q-switched microchip laser , 1998 .
[19] D. Yuan,et al. Preparation and optical properties of nanoscale MgAl2O4 powders doped with Co2+ ions , 2008 .
[20] X. Cheng,et al. Absorption and photoluminescence characteristics of Co2+:MgAl2O4 nanocrystals embedded in sol–gel derived SiO2-based glass , 2004 .
[21] Igor A. Denisov,et al. Nonlinear absorption properties of Co2+:MgAl2O4 crystal , 2000 .
[22] Xinqiang Wang,et al. Effects of Co content and annealing temperature on the structure and optical properties of CoxMg1−xAl2O4 nanoparticles , 2012 .
[23] Tsugio Sato,et al. Synthesis and Thermal Stability of Aluminum Titanate Solid Solutions , 1987 .
[24] V. Pašiškevičius,et al. Diode-Pumped Er-Yb:Glass Laser Passively Q Switched by Use of Co(2+):MgAl(2)O(4) as a Saturable Absorber. , 2000, Applied optics.
[25] Jun Liu,et al. Novel Raman Fiber Lasers Emitting in the U-Band With Combined Volume Bragg Gratings , 2014, IEEE Photonics Journal.
[26] A. L. Frisillo,et al. Lattice vibrations of MgAl2O4 spinel , 1973 .
[27] Linda R. Pinckney,et al. Transition element-doped crystals in glass , 2001, SPIE Optics + Photonics.
[28] K. Yumashev,et al. Anisotropy of nonlinear absorption in Co2+:MgAl2O4 crystal , 2007 .
[29] K. Yumashev,et al. Passive Q-switching of erbium glass laser by magnesium aluminosilicate sitall with cobalt ions , 2007 .
[30] Suhuai Wei,et al. Electronic and optical properties of CoX2O4 (X = Al, Ga, In) alloys , 2012 .
[31] Yoshikazu Suzuki,et al. Magnesium dititanate (MgTi2O5) with pseudobrookite structure: a review , 2011, Science and technology of advanced materials.
[32] N. N. Posnov,et al. Nonlinear spectroscopy and passive Q -switching operation of a Co 2+ :LaMgAl 11 O 19 crystal , 1999 .
[33] D. W. Price,et al. Predicting lattice parameter as a function of cation disorder in MgAl2O4 spinel , 2005 .
[34] I. A. Denisov,et al. Optical absorption and luminescence study of cobalt-doped magnesium aluminosilicate glass ceramics , 2002 .
[35] J. Ferguson,et al. Crystal‐Field Spectra of d3,7 Ions. V. Tetrahedral Co2+ in ZnAl2O4 Spinel , 1969 .
[36] M. Dondi,et al. Crystal structure, optical properties and colouring performance of karrooite MgTi2O5 ceramic pigments , 2007 .
[37] Hanskarl Müller‐Buschbaum,et al. Pseudobrookite mit weitgehend geordneter Metallverteilung: CoTi2O5, MgTi2O5 und FeTi2O5 , 1983 .
[38] R. Roy,et al. Order-disorder in MgAl2O4. The systems: MgAl2O4-LiAl5O8, MgAl2O4-NiCr2O4, MgAl2O4, and NiAl2O4-ZnAl2O4 , 1968 .
[39] R. G. Turner,et al. The distribution of nickel ions among octahedral and tetrahedral sites in NiAl2O4MgAl2O4 solid solutions , 1974 .
[40] D. Wood,et al. Optical Absorption Study of Co‐Doped Oxide Systems. II , 1961 .
[41] A. V. Shestakov,et al. Glass Ceramics Co2+ Saturable Absorber Q-switch for 1.3 - 1.6 µm spectral region , 1998 .
[42] Larry D. Merkle,et al. Resonant pumping and upconversion in 1.6 μm Er 3+ lasers , 2007 .
[43] A. Baranov,et al. Influence of CoO addition on phase separation and crystallization of glasses of the ZnO-Al2O3-SiO2-TiO2 system , 2011 .
[44] X. Mateos,et al. Saturable absorber: transparent glass-ceramics based on a mixture of Co:β-Zn2SiO4 and Co:ZnO nanocrystals. , 2016, Applied optics.
[45] L. P. Sosman,et al. Optical spectroscopy of MgGa2O4:Co2+ , 1992 .
[46] Olga S. Dymshits,et al. A Raman Spectroscopic Study of Phase Transformations in Titanium-Containing Magnesium Aluminosilicate Glasses , 2002 .
[47] P. Barpanda,et al. Chemically induced order disorder transition in magnesium aluminium spinel , 2006 .
[48] T. I. Chuvaeva,et al. The Influence of Nickel Oxide Additives on the Phase Separation and Crystallization of Glasses in the MgO–Al2O3–SiO2–TiO2 System , 2004 .
[49] M. Dondi,et al. M‐Doped Al2TiO5 (M=Cr, Mn, Co) Solid Solutions and their Use as Ceramic Pigments , 2009 .
[50] I. A. Denisov,et al. Nanosized glass-ceramics doped with transition metal ions: nonlinear spectroscopy and possible laser applications , 2002 .
[51] M. Birnbaum,et al. Co2+:ZnS and Co2+:ZnSe saturable absorber Q switches , 2000 .
[52] Alexander M. Malyarevich,et al. Nonlinear absorption properties of new cobalt-doped transparent glass ceramics , 2002, International Conference on Coherent and Nonlinear Optics.
[53] Konstantin V. Yumashev,et al. Absorption and luminescence of tetrahedral Co2+ ion in MgAl2O4 , 1993 .
[54] R. Stalder,et al. Phase Relations and Lattice Constants in the MgO-Al2O3-Ga2O3 System at 1550°C , 1997 .
[55] Xavier Mateos,et al. Structure and nonlinear optical properties of novel transparent glass-ceramics based on Co2+:ZnO nanocrystals , 2016 .
[56] D. Yuan,et al. Preparation of Co2+-doped MgGa2O4 nanocrystals by citrate sol–gel method , 2007 .