Thermal conductivity measurement and interface thermal resistance estimation using SiO2 thin film.

In this paper, we describe an easy-to-use method to measure the thermal conductivity of thin films based on an electrical heating/sensing mechanism and a steady-state technique. The method used relative commonly used instruments, and without any signal processing circuit, is easy to be used in such thin-film thermal conductivity measurement. The SiO2 thin-film samples, prepared by thermal oxidation, plasma enhanced chemical vapor deposition (PECVD), and E-beam evaporator, were deposited on a silicon substrate. The apparent thermal conductivity, the intrinsic thermal conductivity of SiO2 films, and the total interface thermal resistance of the heater/SiO2/silicon system were evaluated. Our data showed agreement with those data obtained from previous literatures and from the 3 omega method. Furthermore, by using a sandwiched structure, the interface thermal resistance of Cr/PECVD SiO2 and PECVD SiO2/silicon were also separately evaluated in this work. The data showed that the interface thermal resistance of Cr/PECVD SiO2 (metal/dielectric) is about one order of magnitude larger than that of PECVD SiO2/silicon (dielectric/dielectric).

[1]  Kenneth E. Goodson,et al.  Thermal conduction in metallized silicon‐dioxide layers on silicon , 1994 .

[2]  Sungho Jin,et al.  Anisotropic thermal conductivity in chemical vapor deposition diamond , 1992 .

[3]  L. T. Su,et al.  Prediction and Measurement of the Thermal Conductivity of Amorphous Dielectric Layers , 1994 .

[4]  Albert Feldman,et al.  Application of the three omega thermal conductivity measurement method to a film on a substrate of finite thickness , 1999 .

[5]  Y. S. Touloukian,et al.  Thermal conductivity: nonmetallic solids , 1970 .

[6]  B. Tsui,et al.  Anisotropic thermal conductivity of nanoporous silica film , 2004 .

[7]  Eric P. Visser,et al.  Measurement of thermal diffusion in thin films using a modulated laser technique: Application to chemical‐vapor‐deposited diamond films , 1992 .

[8]  Y. S. Touloukian Thermal conductivity: metallic elements and alloys , 1971 .

[9]  Seungmin Lee,et al.  Heat transport in thin dielectric films , 1997 .

[10]  J. A. Mucha,et al.  The thermal conductivity of chemical‐vapor‐deposited diamond films on silicon , 1992 .

[11]  Kenneth E. Goodson,et al.  Solid layer thermal-conductivity measurement techniques , 1994 .

[12]  F. Brotzen,et al.  The effective transverse thermal conductivity of amorphous Si3N4 thin films , 1994 .

[13]  R. O. Pohl,et al.  Thermal resistance at interfaces , 1987 .

[14]  D. Wharam,et al.  Extending the 3ω method for thin-film analysis to high frequencies , 2003 .

[15]  A. Majumdar,et al.  Role of electron–phonon coupling in thermal conductance of metal–nonmetal interfaces , 2004 .

[16]  Yu-Chong Tai,et al.  Thermal conductivity of heavily doped low‐pressure chemical vapor deposited polycrystalline silicon films , 1988 .

[17]  T. Yamane,et al.  Measurement of thermal conductivity of silicon dioxide thin films using a 3ω method , 2002 .

[18]  S. Govorkov,et al.  A new method for measuring thermal conductivity of thin films , 1997 .

[19]  F. Brotzen,et al.  Effect of thickness on the transverse thermal conductivity of thin dielectric films , 1994 .

[20]  Takane Usui,et al.  Nanoscale Heat Conduction Across Metal-Dielectric Interfaces , 2006 .

[21]  A. Majumdar,et al.  Nanoscale thermal transport , 2003, Journal of Applied Physics.