Uncertainty Quantification with Applications to Engineering Problems

This paper describes the results of the application of Uncertainty Quantification methods to a railway vehicle dynamical example. Uncertainty Quantification methods take the probability distribution of the system parameters that stems from the parameter tolerances into account in the result. In this paper the methods are applied to a lowdimensional vehicle dynamical model composed by a two-axle bogie, which is connected to a car body by a lateral linear spring, a lateral damper and a torsional spring. Their characteristics are not deterministically defined, but they are defined by probability distributions. The model but with deterministically defined parameters was studied in [1], and this article will focus on the calculation of the critical speed of the model, when the distribution of the parameters is taken into account. Results of the application of the traditional Monte Carlo sampling method will be compared with the results of the application of advanced Uncertainty Quantification methods such as generalized Polynomial Chaos (gPC) [2]. We highlight the computational performance and fast convergence that result from the application of advanced Uncertainty Quantification methods. Generalized Polynomial Chaos will be presented in both the Galerkin and Collocation form with emphasis on the pros and cons of each of those approaches.

[1]  Stefano Tarantola,et al.  Variance‐Based Methods , 2008 .

[2]  Pietro Marco Congedo,et al.  Runup and uncertainty quantification: sensitivity analysis via ANOVA decomposition , 2014 .

[3]  Jurjen A. Battjes,et al.  Numerical simulation of nonlinear wave propagation over a bar , 1994 .

[4]  Michael S. Eldred,et al.  Sparse Pseudospectral Approximation Method , 2011, 1109.2936.

[5]  Rene F. Swarttouw,et al.  Hypergeometric Orthogonal Polynomials , 2010 .

[6]  N. Cutland,et al.  On homogeneous chaos , 1991, Mathematical Proceedings of the Cambridge Philosophical Society.

[7]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[8]  Georg Rill,et al.  Numerical methods in vehicle system dynamics: state of the art and current developments , 2011 .

[9]  Vin de Silva,et al.  Tensor rank and the ill-posedness of the best low-rank approximation problem , 2006, math/0607647.

[10]  Alex Townsend,et al.  Continuous analogues of matrix factorizations , 2015, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[11]  Yu,et al.  Wave decomposition phenomenon and spectrum evolution over submerged bars , 2009 .

[12]  R. A. Silverman,et al.  Introductory Real Analysis , 1972 .

[13]  W. T. Martin,et al.  The Orthogonal Development of Non-Linear Functionals in Series of Fourier-Hermite Functionals , 1947 .

[14]  CarleAlan,et al.  ADIFOR-Generating Derivative Codes from Fortran Programs , 1992 .

[15]  Michael C. Johnson,et al.  Some uncertainties associated with wind and wave description and their importance for engineering applications , 2014 .

[16]  H. True On the Theory of Nonlinear Dynamics and its Applications in Vehicle Systems Dynamics , 1999 .

[17]  J. C. Rault,et al.  Proc. of international conference on Tools, methods and languages for scientific and engineering computation , 1984 .

[18]  B. Khoromskij O(dlog N)-Quantics Approximation of N-d Tensors in High-Dimensional Numerical Modeling , 2011 .

[19]  C. D. Boor,et al.  Computational aspects of polynomial interpolation in several variables , 1992 .

[20]  R. Errico What is an adjoint model , 1997 .

[21]  J. J. Kalker,et al.  Wheel-rail rolling contact theory , 1991 .

[22]  P. Stark Inverse problems as statistics , 2002 .

[23]  C. W. Clenshaw,et al.  A method for numerical integration on an automatic computer , 1960 .

[24]  R. Cook,et al.  Concepts and Applications of Finite Element Analysis , 1974 .

[25]  William E. Schiesser,et al.  Linear and nonlinear waves , 2009, Scholarpedia.

[26]  George Em Karniadakis,et al.  Anchor Points Matter in ANOVA Decomposition , 2011 .

[27]  Christian P. Robert,et al.  The Bayesian choice : from decision-theoretic foundations to computational implementation , 2007 .

[28]  E. Hairer,et al.  Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .

[29]  Marcelo H. Kobayashi,et al.  Stochastic Solution for Uncertainty Propagation in Nonlinear Shallow-Water Equations , 2008 .

[30]  S. Goreinov,et al.  How to find a good submatrix , 2010 .

[31]  Hans Bruun Nielsen,et al.  Numeriske Metoder for Sædvanlige Differentialligninger , 1993 .

[32]  Roger G. Ghanem,et al.  Identification of Bayesian posteriors for coefficients of chaos expansions , 2010, J. Comput. Phys..

[33]  Sean R Eddy,et al.  What is dynamic programming? , 2004, Nature Biotechnology.

[34]  Knut Petras,et al.  Smolyak cubature of given polynomial degree with few nodes for increasing dimension , 2003, Numerische Mathematik.

[35]  Matteo Diez,et al.  URANS study of Delft catamaran total/added resistance, motions and slamming loads in head sea including irregular wave and uncertainty quantification for variable regular wave and geometry , 2013 .

[36]  Allan Peter Engsig-Karup,et al.  Fast hydrodynamics on heterogenous many-core hardware , 2013 .

[37]  J. Lambert Numerical Methods for Ordinary Differential Equations , 1991 .

[38]  Habib N. Najm,et al.  Dimensionality reduction and polynomial chaos acceleration of Bayesian inference in inverse problems , 2008, J. Comput. Phys..

[39]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[40]  C. D. Boor,et al.  On multivariate polynomial interpolation , 1990 .

[41]  Christoph Schwab,et al.  Karhunen-Loève approximation of random fields by generalized fast multipole methods , 2006, J. Comput. Phys..

[42]  Dishi Liu,et al.  Uncertainty quantification with shallow water equations , 2009 .

[43]  Philip Jonathan,et al.  Statistical modelling of extreme ocean environments for marine design: A review , 2013 .

[44]  R. Ghanem,et al.  Multi-resolution analysis of wiener-type uncertainty propagation schemes , 2004 .

[45]  B. Finlayson The method of weighted residuals and variational principles : with application in fluid mechanics, heat and mass transfer , 1972 .

[46]  W. Gautschi Construction of Gauss-Christoffel quadrature formulas , 1968 .

[47]  Randall J. LeVeque,et al.  Finite difference methods for ordinary and partial differential equations - steady-state and time-dependent problems , 2007 .

[48]  K. Johnson,et al.  Contact of Nonspherical Elastic Bodies Transmitting Tangential Forces , 1964 .

[49]  A. Engsig-Karup,et al.  Comparison of Classical and Modern Uncertainty Qualification Methods for the Calculation of Critical Speeds in Railway Vehicle Dynamics , 2012 .

[50]  Hans True,et al.  The dynamics of European two-axle railway freight wagons with UIC standard suspension , 2008 .

[51]  G. Karniadakis,et al.  An adaptive multi-element generalized polynomial chaos method for stochastic differential equations , 2005 .

[52]  Hans True,et al.  On a New Route to Chaos in Railway Dynamics , 1997 .

[53]  Allan Peter Engsig-Karup,et al.  A Fast GPU-Accelerated Mixed-Precision Strategy for Fully Nonlinear Water Wave Computations , 2013 .

[54]  Charles C. MacAdam,et al.  Measurement and Representation of the Mechanical Properties of Truck Leaf Springs , 1980 .

[55]  J. Littlewood,et al.  Some new properties of fourier constants , 1927 .

[56]  D. Xiu Numerical Methods for Stochastic Computations: A Spectral Method Approach , 2010 .

[57]  Nicolai Schipper Jespersen,et al.  An Introduction to Markov Chain Monte Carlo , 2010 .

[58]  T. Patterson,et al.  The optimum addition of points to quadrature formulae. , 1968 .

[59]  Y. Maday,et al.  Reduced Basis Techniques for Stochastic Problems , 2010, 1004.0357.

[60]  Ivan Oseledets,et al.  QTT approximation of elliptic solution operators in higher dimensions , 2011 .

[61]  William J. Cook,et al.  The Traveling Salesman Problem: A Computational Study , 2007 .

[62]  Dongbin Xiu,et al.  The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..

[63]  George E. Karniadakis,et al.  Adaptive Generalized Polynomial Chaos for Nonlinear Random Oscillators , 2005, SIAM J. Sci. Comput..

[64]  L. Petzold Automatic Selection of Methods for Solving Stiff and Nonstiff Systems of Ordinary Differential Equations , 1983 .

[65]  Harry B. Bingham,et al.  An efficient flexible-order model for 3D nonlinear water waves , 2009, J. Comput. Phys..

[66]  A. Nouy A generalized spectral decomposition technique to solve a class of linear stochastic partial differential equations , 2007 .

[67]  Thomas Gerstner,et al.  Numerical integration using sparse grids , 2004, Numerical Algorithms.

[68]  Stefano Tarantola,et al.  A Quantitative Model-Independent Method for Global Sensitivity Analysis of Model Output , 1999, Technometrics.

[69]  I. Sobola,et al.  Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates , 2001 .

[70]  Barry Saltzman,et al.  Finite Amplitude Free Convection as an Initial Value Problem—I , 1962 .

[71]  Michael S. Eldred,et al.  Uncertainty Quantification In Large Computational Engineering Models , 2001 .

[72]  Arthur Schopenhauer,et al.  The World as Will and Representation , 1818 .

[73]  Nils-Bastian Heidenreich,et al.  Bandwidth selection for kernel density estimation: a review of fully automatic selectors , 2013, AStA Advances in Statistical Analysis.

[74]  R. Ghanem,et al.  Uncertainty propagation using Wiener-Haar expansions , 2004 .

[75]  William H. Press,et al.  Numerical Recipes 3rd Edition: The Art of Scientific Computing , 2007 .

[76]  Wayne H. Enright,et al.  Interpolants for Runge-Kutta formulas , 1986, TOMS.

[77]  Dmitry V. Savostyanov,et al.  Quasioptimality of maximum-volume cross interpolation of tensors , 2013, 1305.1818.

[78]  A. Stroud Remarks on the disposition of points in numerical integration formulas. , 1957 .

[79]  George E. Karniadakis,et al.  Time-dependent generalized polynomial chaos , 2010, J. Comput. Phys..

[80]  Joseph A. C. Delaney Sensitivity analysis , 2018, The African Continental Free Trade Area: Economic and Distributional Effects.

[81]  Hans True,et al.  Multiple attractors and critical parameters and how to find them numerically: the right, the wrong and the gambling way , 2013 .

[82]  Hans True,et al.  Dynamics of Railway Vehicles and Rail/Wheel Contact , 2009 .

[83]  Allan Peter Engsig-Karup,et al.  A massively parallel GPU‐accelerated model for analysis of fully nonlinear free surface waves , 2012 .

[84]  R. Caflisch,et al.  Quasi-Monte Carlo integration , 1995 .

[85]  Craig B. Borkowf,et al.  Random Number Generation and Monte Carlo Methods , 2000, Technometrics.

[86]  Sönke Kraft,et al.  Propagation of variability in railway dynamic simulations: application to virtual homologation , 2012 .

[87]  Claudio Canuto,et al.  Spectral Methods: Evolution to Complex Geometries and Applications to Fluid Dynamics (Scientific Computation) , 2007 .

[88]  Yvon Maday,et al.  Polynomial interpolation results in Sobolev spaces , 1992 .

[89]  F. Smithies The Eigen‐Values and Singular Values of Integral Equations† , 1938 .

[90]  Karl Iagnemma,et al.  A polynomial chaos approach to the analysis of vehicle dynamics under uncertainty , 2012 .

[91]  Trevor Hastie,et al.  Kernel Smoothing Methods , 2009 .

[92]  Denys Dutykh,et al.  Efficient computation of steady solitary gravity waves , 2013, 1302.1812.

[93]  M. Yor,et al.  Continuous martingales and Brownian motion , 1990 .

[94]  Thomas Y. Hou,et al.  A dynamically bi-orthogonal method for time-dependent stochastic partial differential equations I: Derivation and algorithms , 2013, J. Comput. Phys..

[95]  R. Herzog,et al.  Algorithms for PDE‐constrained optimization , 2010 .

[96]  A. Rollett,et al.  The Monte Carlo Method , 2004 .

[97]  Simon Iwnicki,et al.  The Manchester Benchmarks for Rail Vehicle Simulation , 1998 .

[98]  Allan Peter Engsig-Karup,et al.  Development of High-Performance Software Components for Emerging Architectures , 2014 .

[99]  D. Duhamel,et al.  DYNAMICAL BEHAVIOR OF TRAINS EXCITED BY A NON-GAUSSIAN VECTOR VALUED RANDOM FIELD , 2013 .

[100]  Roger Ghanem,et al.  Adaptive polynomial chaos expansions applied to statistics of extremes in nonlinear random vibration , 1998 .

[101]  H. Hertz Ueber die Berührung fester elastischer Körper. , 1882 .

[102]  G. PERRIN,et al.  Identification of Polynomial Chaos Representations in High Dimension from a Set of Realizations , 2012, SIAM J. Sci. Comput..

[103]  H. Bateman Book Review: Ergebnisse der Mathematik und ihrer Grenzgebiete , 1933 .

[104]  Christian Soize,et al.  Track irregularities stochastic modeling , 2011 .

[105]  L. Petzold,et al.  Numerical methods and software for sensitivity analysis of differential-algebraic systems , 1986 .

[106]  Raphaël Couturier,et al.  Designing Scientific Applications on GPUs , 2013 .

[107]  Eric R. Ziegel,et al.  The Elements of Statistical Learning , 2003, Technometrics.

[108]  A. Stroud,et al.  Nodes and Weights of Quadrature Formulas , 1965 .

[109]  Hans True,et al.  On the dynamics of a railway freight wagon with UIC standard suspension , 2006 .

[110]  Christian Soize,et al.  Karhunen-Loève expansion revisited for vector-valued random fields: Scaling, errors and optimal basis , 2013, J. Comput. Phys..

[111]  Hans True,et al.  The dynamics of a railway freight wagon wheelset with dry friction damping in the suspension , 2003 .

[112]  Kjell Gustafsson,et al.  Control of Error and Convergence in ODE Solvers , 1992 .

[113]  Hans True On a New Phenomenon in Bifurcations of Periodic Orbits , 1994 .

[114]  Youssef M. Marzouk,et al.  Adaptive Smolyak Pseudospectral Approximations , 2012, SIAM J. Sci. Comput..

[115]  Rasmus Bro,et al.  MULTI-WAY ANALYSIS IN THE FOOD INDUSTRY Models, Algorithms & Applications , 1998 .

[116]  D. Xiu Numerical integration formulas of degree two , 2008 .

[117]  G. Karniadakis,et al.  Multi-Element Generalized Polynomial Chaos for Arbitrary Probability Measures , 2006, SIAM J. Sci. Comput..

[118]  Daniel Kressner,et al.  A literature survey of low‐rank tensor approximation techniques , 2013, 1302.7121.

[119]  Pierre F. J. Lermusiaux,et al.  Numerical schemes for dynamically orthogonal equations of stochastic fluid and ocean flows , 2013, J. Comput. Phys..

[120]  Albert Tarantola,et al.  Inverse problem theory - and methods for model parameter estimation , 2004 .

[121]  Richard J. Beckman,et al.  A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code , 2000, Technometrics.

[122]  Olivier P. Le Maître,et al.  Polynomial chaos expansion for sensitivity analysis , 2009, Reliab. Eng. Syst. Saf..

[123]  J. Waldvogel Fast Construction of the Fejér and Clenshaw–Curtis Quadrature Rules , 2006 .

[124]  Konrad Jörgens,et al.  Linear integral operators , 1982 .

[125]  Robert E. Melchers,et al.  Structural Reliability: Analysis and Prediction , 1987 .

[126]  Steven R. Bishop,et al.  Nonlinearity and Chaos in Engineering Dynamics , 1994 .

[127]  Hans True,et al.  On the dynamics of the three-piece-freight truck , 2003, Proceedings of the 2003 IEEE/ASME Joint Railroad Conference, 2003..

[128]  Thomas Y. Hou,et al.  A dynamically bi-orthogonal method for time-dependent stochastic partial differential equations II: Adaptivity and generalizations , 2013, J. Comput. Phys..

[129]  N. Sidiropoulos,et al.  On the uniqueness of multilinear decomposition of N‐way arrays , 2000 .

[130]  J. P. Pascal,et al.  Solution of the Multiple Wheel and Rail Contact Dynamic Problem , 1990 .

[131]  Ivan Oseledets,et al.  Tensor-Train Decomposition , 2011, SIAM J. Sci. Comput..

[132]  Boris N. Khoromskij,et al.  Quantics-TT Collocation Approximation of Parameter-Dependent and Stochastic Elliptic PDEs , 2010, Comput. Methods Appl. Math..

[133]  Boxin Tang Orthogonal Array-Based Latin Hypercubes , 1993 .

[134]  Nadine Aubry,et al.  Spatiotemporal analysis of complex signals: Theory and applications , 1991 .

[135]  Lars Grasedyck,et al.  Hierarchical Singular Value Decomposition of Tensors , 2010, SIAM J. Matrix Anal. Appl..

[136]  Allan Peter Engsig-Karup,et al.  Development of software components for heterogeneous many-core architectures , 2013 .

[137]  Habib N. Najm,et al.  Multi-Resolution-Analysis Scheme for Uncertainty Quantification in Chemical Systems , 2007, SIAM J. Sci. Comput..

[138]  Klaus Knothe,et al.  HISTORY OF STABILITY OF RAILWAY AND ROAD VEHICLES , 1999 .

[139]  Massimo Fornasier,et al.  Compressive Sensing , 2015, Handbook of Mathematical Methods in Imaging.

[140]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[141]  Xiu Yang,et al.  Enabling High-Dimensional Hierarchical Uncertainty Quantification by ANOVA and Tensor-Train Decomposition , 2014, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[142]  A. Genz,et al.  Fully symmetric interpolatory rules for multiple integrals over infinite regions with Gaussian weight , 1996 .

[143]  Erich Novak,et al.  High dimensional polynomial interpolation on sparse grids , 2000, Adv. Comput. Math..

[144]  Nadine Aubry,et al.  On The Hidden Beauty of the Proper Orthogonal Decomposition , 1991 .

[145]  J. Larsen,et al.  Open boundaries in short wave simulations — A new approach , 1983 .

[146]  Ernst Hairer,et al.  Solving Ordinary Differential Equations I: Nonstiff Problems , 2009 .

[147]  Harry B. Bingham,et al.  On the accuracy of finite-difference solutions for nonlinear water waves , 2007 .

[148]  Thomas Gerstner,et al.  Dimension–Adaptive Tensor–Product Quadrature , 2003, Computing.

[149]  Christian Soize,et al.  Identification of high-dimension polynomial chaos expansions with random coefficients for non-Gaussian tensor-valued random fields using partial and limited experimental data , 2010 .

[150]  R. Ghanem,et al.  Iterative solution of systems of linear equations arising in the context of stochastic finite elements , 2000 .

[151]  E. Kreyszig Introductory Functional Analysis With Applications , 1978 .

[152]  R. Mazo On the theory of brownian motion , 1973 .

[153]  George E. Karniadakis,et al.  The multi-element probabilistic collocation method (ME-PCM): Error analysis and applications , 2008, J. Comput. Phys..

[154]  H. True,et al.  The Dynamics of a Railway Freight Wagon Wheelset With Dry Friction Damping , 2002 .

[155]  D. Xiu Fast numerical methods for stochastic computations: A review , 2009 .

[156]  Christian Soize,et al.  Maximum likelihood estimation of stochastic chaos representations from experimental data , 2006 .

[157]  David A. Kopriva,et al.  Implementing Spectral Methods for Partial Differential Equations , 2009 .

[158]  Didier Lucor,et al.  Prediction of stochastic limit cycle oscillations using an adaptive Polynomial Chaos method , 2010 .

[159]  Hans True,et al.  On the ultimate transition to chaos in the dynamics of Cooperrider's bogie , 1997 .

[160]  Anthony Nouy,et al.  Model Reduction Based on Proper Generalized Decomposition for the Stochastic Steady Incompressible Navier-Stokes Equations , 2014, SIAM J. Sci. Comput..

[161]  Stefano Bruni,et al.  Effect of Suspension Parameter Uncertainty on the Dynamic Behaviour of Railway Vehicles , 2011 .

[162]  Probabilistic sensitivity measures applied to numerical models of flow and transport , 1997 .

[163]  M. Rosenblatt Remarks on a Multivariate Transformation , 1952 .

[164]  Alan Genz,et al.  A Package for Testing Multiple Integration Subroutines , 1987 .

[165]  Malik Magdon-Ismail,et al.  On selecting a maximum volume sub-matrix of a matrix and related problems , 2009, Theor. Comput. Sci..

[166]  Boris N. Khoromskij,et al.  Tensor-Structured Galerkin Approximation of Parametric and Stochastic Elliptic PDEs , 2011, SIAM J. Sci. Comput..

[167]  Jie Shen,et al.  Some Recent Advances on Spectral Methods for Unbounded Domains , 2008 .

[168]  E. Tyrtyshnikov,et al.  TT-cross approximation for multidimensional arrays , 2010 .

[169]  Andrew Gelman,et al.  Handbook of Markov Chain Monte Carlo , 2011 .

[170]  Tim R. McClanahan Mechanische Quadraturen mit positiven Cotesschen Zahlen , 2016 .

[171]  A. Nouy Proper Generalized Decompositions and Separated Representations for the Numerical Solution of High Dimensional Stochastic Problems , 2010 .

[172]  Pierre F. J. Lermusiaux,et al.  Dynamically orthogonal field equations for continuous stochastic dynamical systems , 2009 .

[173]  Severnyi Kavkaz Pseudo-Skeleton Approximations by Matrices of Maximal Volume , 2022 .

[174]  P. Halmos,et al.  Bounded integral operators on L²spaces , 1978 .

[175]  E. Davies,et al.  LINEAR INTEGRAL OPERATORS: Surveys and Reference Works in Mathematics, 7 , 1983 .

[176]  White,et al.  Density-matrix algorithms for quantum renormalization groups. , 1993, Physical review. B, Condensed matter.

[177]  Christian Kaas-Petersen,et al.  A Bifurcation Analysis of Nonlinear Oscillations in Railway Vehicles , 1983 .

[178]  Holger Rauhut,et al.  Sparse Legendre expansions via l1-minimization , 2012, J. Approx. Theory.

[179]  J. Chang,et al.  Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition , 1970 .

[180]  Hans True,et al.  Sensitivity analysis of the critical speed in railway vehicle dynamics , 2014 .

[181]  S. Shreve,et al.  Stochastic differential equations , 1955, Mathematical Proceedings of the Cambridge Philosophical Society.

[182]  Fabio Nobile,et al.  An Anisotropic Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..

[183]  H. Niederreiter Quasi-Monte Carlo methods and pseudo-random numbers , 1978 .

[184]  Alan Genz,et al.  Testing multidimensional integration routines , 1984 .

[185]  Hans True,et al.  Non-smooth Problems in Vehicle Systems Dynamics , 2010 .

[186]  Øistein Hagen,et al.  Uncertainties in data for the offshore environment , 1990 .

[187]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[188]  Hans True,et al.  On the numerical and computational aspects of non-smoothnesses that occur in railway vehicle dynamics , 2014, Math. Comput. Simul..

[189]  Jan S. Hesthaven,et al.  Efficient Solution of Ordinary Differential Equations with High-Dimensional Parametrized Uncertainty , 2011 .

[190]  N. G. Parke,et al.  Ordinary Differential Equations. , 1958 .

[191]  Dirk Pflüger,et al.  Lecture Notes in Computational Science and Engineering , 2010 .

[192]  D. Lathrop Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering , 2015 .

[193]  John Wiley,et al.  A wiley-interscience publication , 1972 .

[194]  Robert W. Whalin,et al.  The limit of applicability of linear wave refraction theory in a convergence zone , 1971 .

[195]  Christoph Glocker,et al.  SIMULATION OF NON-SMOOTH MECHANICAL SYSTEMS WITH MANY UNILATERAL CONSTRAINTS , 2005 .

[196]  N. Cressie The origins of kriging , 1990 .

[197]  Hans True,et al.  MODERN UNCERTAINTY QUANTIFICATION METHODS IN RAILROAD VEHICLE DYNAMICS , 2013 .

[198]  Yann Bezin,et al.  DynoTRAIN: introduction of simulation in the certification process of railway vehicles , 2014 .

[199]  J. Piotrowski Model of the UIC link suspension for freight wagons , 2003 .

[200]  Adrien Leygue,et al.  The Proper Generalized Decomposition for Advanced Numerical Simulations: A Primer , 2013 .

[201]  T. N. Stevenson,et al.  Fluid Mechanics , 2021, Nature.

[202]  Habib N. Najm,et al.  Stochastic spectral methods for efficient Bayesian solution of inverse problems , 2005, J. Comput. Phys..

[203]  Christian Soize,et al.  Construction of probability distributions in high dimension using the maximum entropy principle: Applications to stochastic processes, random fields and random matrices , 2008 .

[204]  Ivan V. Oseledets,et al.  Fast adaptive interpolation of multi-dimensional arrays in tensor train format , 2011, The 2011 International Workshop on Multidimensional (nD) Systems.

[205]  D. Xiu,et al.  STOCHASTIC COLLOCATION ALGORITHMS USING 𝓁 1 -MINIMIZATION , 2012 .

[206]  J. Kruskal,et al.  How 3-MFA data can cause degenerate parafac solutions, among other relationships , 1989 .

[207]  Takuji Waseda,et al.  Recent developments of ocean environmental description with focus on uncertainties , 2014 .

[208]  Daniele Venturi,et al.  On proper orthogonal decomposition of randomly perturbed fields with applications to flow past a cylinder and natural convection over a horizontal plate , 2006, Journal of Fluid Mechanics.

[209]  Didier Lucor,et al.  Non intrusive iterative stochastic spectral representation with application to compressible gas dynamics , 2012, J. Comput. Phys..

[210]  Philipp Birken,et al.  Numerical Linear Algebra , 2011, Encyclopedia of Parallel Computing.

[211]  Shengtai Li,et al.  Adjoint Sensitivity Analysis for Differential-Algebraic Equations: The Adjoint DAE System and Its Numerical Solution , 2002, SIAM J. Sci. Comput..

[212]  A. Kiureghian,et al.  Aleatory or epistemic? Does it matter? , 2009 .

[213]  WALTER GAUTSCHI Algorithm 726: ORTHPOL–a package of routines for generating orthogonal polynomials and Gauss-type quadrature rules , 1994, TOMS.

[214]  Alexey L. Lastovetsky,et al.  High Performance Heterogeneous Computing , 2009, Wiley series on parallel and distributed computing.

[215]  Dongbin Xiu,et al.  Stochastic Collocation Methods on Unstructured Grids in High Dimensions via Interpolation , 2012, SIAM J. Sci. Comput..

[216]  N. K. Cooperrider The Hunting Behavior of Conventional Railway Trucks , 1972 .

[217]  J. K. Hedrick,et al.  A Comparison of Alternative Creep Force Models for Rail Vehicle Dynamic Analysis , 1983 .

[218]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[219]  Habib N. Najm,et al.  A multigrid solver for two-dimensional stochastic diffusion equations , 2003 .