3D polarization texture of a symmetric 4-fold flux closure domain in strained ferroelectric PbTiO_3 films

Although the strong coupling of polarization to spontaneous strain in ferroelectrics would impart a flux-closure with severe disclination strains, recent studies have successfully stabilized such a domain via a nano-scaled multi-layer growth. Nonetheless, the detailed distributions of polarizations in three-dimensions (3D) and how the strains inside a flux closure affect the structures of domain walls are still less understood. Here we report a 3D polarization texture of a 4-fold flux closure domain identified in tensile strained ferroelectric PbTiO 3 /SrTiO 3 multilayer films. Ferroelectric displacement analysis based on aberration-corrected scanning transmission electron microscopic imaging reveals highly inhomogeneous strains with strain gradient above 10 7 /m. These giant disclination strains significantly broaden the 90° domain walls, while the flexoelectric coupling at 180° domain wall is less affected. The present observations are helpful for understanding the basics of topological dipole textures and indicate novel applications of ferroelectrics through engineering strains.

[1]  A. Minor,et al.  Observation of polar vortices in oxide superlattices , 2016, Nature.

[2]  Y. Tang,et al.  On the benefit of aberration-corrected HAADF-STEM for strain determination and its application to tailoring ferroelectric domain patterns. , 2016, Ultramicroscopy.

[3]  Zhidong Zhou,et al.  Domain structures of ferroelectric films under different electrical boundary conditions , 2015 .

[4]  D. Tenne,et al.  Emergence of room-temperature ferroelectricity at reduced dimensions , 2015, Science.

[5]  H. D. Chopra,et al.  Non-Joulian magnetostriction , 2015, Nature.

[6]  S. Pennycook,et al.  Observation of a periodic array of flux-closure quadrants in strained ferroelectric PbTiO3 films , 2015, Science.

[7]  A. Gruverman,et al.  Exploring vertex interactions in ferroelectric flux-closure domains. , 2014, Nano letters.

[8]  Y. Tokura,et al.  Topological properties and dynamics of magnetic skyrmions. , 2013, Nature nanotechnology.

[9]  Long-qing Chen,et al.  Phase transitions and domain structures of ferroelectric nanoparticles: Phase field model incorporating strong elastic and dielectric inhomogeneity , 2013 .

[10]  R. Wiesendanger,et al.  Writing and Deleting Single Magnetic Skyrmions , 2013, Science.

[11]  L-W Chang,et al.  Self-similar nested flux closure structures in a tetragonal ferroelectric. , 2013, Nano letters.

[12]  Structural phase transitions and electronic phenomena at 180-degree domain walls in rhombohedral BaTiO3 , 2013 .

[13]  Biao Wang,et al.  Vortex Domain Structure in Ferroelectric Nanoplatelets and Control of its Transformation by Mechanical Load , 2012, Scientific Reports.

[14]  A. Tagantsev,et al.  Bichiral structure of ferroelectric domain walls driven by flexoelectricity , 2012, 1207.5507.

[15]  James F. Scott,et al.  Domain wall nanoelectronics , 2012 .

[16]  A Lubk,et al.  Flexoelectric rotation of polarization in ferroelectric thin films. , 2011, Nature materials.

[17]  L. McGilly,et al.  Polarization closure in PbZr((0.42))Ti((0.58))O(3) nanodots. , 2011, Nano letters.

[18]  A. Gruverman,et al.  Mesoscale flux-closure domain formation in single-crystal , 2011, Nature communications.

[19]  Marin Alexe,et al.  Direct Observation of Continuous Electric Dipole Rotation in Flux-Closure Domains in Ferroelectric Pb(Zr,Ti)O3 , 2011, Science.

[20]  Yi Zhang,et al.  Spontaneous vortex nanodomain arrays at ferroelectric heterointerfaces. , 2011, Nano letters.

[21]  L. McGilly,et al.  Domain bundle boundaries in single crystal BaTiO3 lamellae: searching for naturally forming dipole flux-closure/quadrupole chains. , 2010, Nano letters.

[22]  Y. Tokura,et al.  Real-space observation of a two-dimensional skyrmion crystal , 2010, Nature.

[23]  V. Gopalan,et al.  A modified Landau-Devonshire thermodynamic potential for strontium titanate , 2010 .

[24]  L. Eric Cross,et al.  Domains in Ferroic Crystals and Thin Films , 2010 .

[25]  Sergei V. Kalinin,et al.  Deterministic control of ferroelastic switching in multiferroic materials. , 2009, Nature nanotechnology.

[26]  K. Webber,et al.  Domains in ferroelectric nanodots. , 2009, Nano letters.

[27]  Steve Granick,et al.  Image analysis with rapid and accurate two-dimensional Gaussian fitting. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[28]  Long-Qing Chen,et al.  Phase-field method of phase transitions/domain structures in ferroelectric thin films: A review , 2008 .

[29]  A. Tagantsev,et al.  Short-range and long-range contributions to the size effect in metal-ferroelectric-metal heterostructures , 2008 .

[30]  J. Junquera,et al.  Ferromagneticlike closure domains in ferroelectric ultrathin films: first-principles simulations. , 2008, Physical review letters.

[31]  Andrei Artemev,et al.  Phase-field modeling of domain structure of confined nanoferroelectrics. , 2008, Physical review letters.

[32]  Laurent Bellaiche,et al.  Characteristics and signatures of dipole vortices in ferroelectric nanodots : First-principles-based simulations and analytical expressions , 2007 .

[33]  J. Scott,et al.  Applications of Modern Ferroelectrics , 2007, Science.

[34]  P. Littlewood,et al.  A Landau Primer for Ferroelectrics , 2006, cond-mat/0609347.

[35]  N. Spaldin Analogies and Differences between Ferroelectricsand Ferromagnets , 2007 .

[36]  Rainer Waser,et al.  Unit-cell scale mapping of ferroelectricity and tetragonality in epitaxial ultrathin ferroelectric films. , 2007, Nature materials.

[37]  Jean-Marc Triscone,et al.  Physics of ferroelectrics : a modern perspective , 2007 .

[38]  C. Pfleiderer,et al.  Spontaneous skyrmion ground states in magnetic metals , 2006, Nature.

[39]  Y. Tokura,et al.  Real-Space Observation of Helical Spin Order , 2006, Science.

[40]  L. Bellaiche,et al.  Unusual phase transitions in ferroelectric nanodisks and nanorods , 2004, Nature.

[41]  Shenyang Y. Hu,et al.  Effect of electrical boundary conditions on ferroelectric domain structures in thin films , 2002 .

[42]  Shenyang Y. Hu,et al.  Effect of substrate constraint on the stability and evolution of ferroelectric domain structures in thin films , 2002 .

[43]  D. Vanderbilt,et al.  Ab initio study of ferroelectric domain walls in PbTiO 3 , 2001, cond-mat/0109257.

[44]  Ono,et al.  Magnetic vortex core observation in circular dots of permalloy , 2000, Science.

[45]  Martin Hÿtch,et al.  Quantitative measurement of displacement and strain fields from HREM micrographs , 1998 .

[46]  Jie Shen,et al.  Applications of semi-implicit Fourier-spectral method to phase field equations , 1998 .

[47]  Ronald E. Cohen,et al.  Origin of ferroelectricity in perovskite oxides , 1992, Nature.

[48]  Scott,et al.  Clock-model description of incommensurate ferroelectric films and of nematic-liquid-crystal films. , 1986, Physical review. B, Condensed matter.

[49]  A. L. Roitburd,et al.  Equilibrium structure of epitaxial layers , 1976 .

[50]  J. Nye Physical Properties of Crystals: Their Representation by Tensors and Matrices , 1957 .

[51]  C. Kittel,et al.  Physical Theory of Ferromagnetic Domains , 1949 .

[52]  Charles Kittel,et al.  Theory of the structure of ferromagnetic domains in films and small particles , 1946 .