Two generalized complex orthogonal space-time block codes of rates 7/11 and 3/5 for 5 and 6 transmit antennas

Space-time block codes from orthogonal designs have two advantages, namely, fast maximum-likelihood (ML) decoding and full diversity. Rate 1 real (pulse amplitude modulation-PAM) space-time codes (real orthogonal designs) for multiple transmit antennas have been constructed from the real Hurwitz-Radon families, which also provides the rate 1/2 complex (quadrature amplitude modulation-QAM) space-time codes (complex orthogonal designs) for any number of transmit antennas. Rate 3/4 complex orthogonal designs (space-time codes) for three and four transmit antennas have existed in the literature but no high rate (>1/2) complex orthogonal designs for other numbers of transmit antennas exist. We present rate 7/11 and rate 3/5 generalized complex orthogonal designs for five and six transmit antennas, respectively.

[1]  Xiaodai Dong,et al.  Signaling constellations for fading channels , 1999, IEEE Trans. Commun..

[2]  F. Pollara,et al.  Parallel concatenated trellis coded modulation , 1996, Proceedings of ICC/SUPERCOMM '96 - International Conference on Communications.

[3]  D. Divsalar,et al.  On the Design of Turbo Codes , 1995 .

[4]  Gottfried Ungerboeck,et al.  Channel coding with multilevel/phase signals , 1982, IEEE Trans. Inf. Theory.

[5]  Jennifer Seberry,et al.  Orthogonal Designs: Quadratic Forms and Hadamard Matrices , 1979 .

[6]  Xiang-Gen Xia,et al.  On Space-Time Block Codes from Complex Orthogonal Designs , 2003, Wirel. Pers. Commun..

[7]  Stéphane Le Goff Les turbo-codes et leur application aux transmissions à forte efficacité spectrale , 1995 .

[8]  S. Brink,et al.  Iterative demapping for QPSK modulation , 1998 .

[9]  Daniel B. Shapiro,et al.  Compositions of Quadratic Forms , 2000 .

[10]  Ari Hottinen,et al.  Square-matrix embeddable space-time block codes for complex signal constellations , 2002, IEEE Trans. Inf. Theory.

[11]  A. Robert Calderbank,et al.  Correction to "Space-Time codes from orthogonal designs" , 2000, IEEE Trans. Inf. Theory.

[12]  A. Robert Calderbank,et al.  Space-Time Codes for High Data Rate Wireless Communications : Performance criterion and Code Construction , 1998, IEEE Trans. Inf. Theory.

[13]  Michael P. Fitz,et al.  Signal design for transmitter diversity wireless communication systems over Rayleigh fading channels , 1999, IEEE Trans. Commun..

[14]  D.J.C. MacKay,et al.  Good error-correcting codes based on very sparse matrices , 1997, Proceedings of IEEE International Symposium on Information Theory.

[15]  Richard D. Wesel,et al.  Profile Optimal 8-QAM and 32-QAM Constellations , 1998 .

[16]  Patrick Robertson,et al.  Bandwidth-Efficient Turbo Trellis-Coded Modulation Using Punctured Component Codes , 1998, IEEE J. Sel. Areas Commun..

[17]  Richard D. Wesel,et al.  Constellation labeling for linear encoders , 2001, IEEE Trans. Inf. Theory.

[18]  Siavash M. Alamouti,et al.  A simple transmit diversity technique for wireless communications , 1998, IEEE J. Sel. Areas Commun..

[19]  Thomas L. Marzetta,et al.  A transmitter diversity scheme for wideband CDMA systems based on space-time spreading , 2001, IEEE J. Sel. Areas Commun..

[20]  A. Robert Calderbank,et al.  Space-Time block codes from orthogonal designs , 1999, IEEE Trans. Inf. Theory.

[21]  Xiang-Gen Xia,et al.  Upper bounds of rates of complex orthogonal space-time block code , 2003, IEEE Trans. Inf. Theory.

[22]  Petre Stoica,et al.  Space-Time block codes: A maximum SNR approach , 2001, IEEE Trans. Inf. Theory.