Statistical arbitrage with optimal causal paths on high-frequency data of the S&P 500

This paper develops the optimal causal path algorithm and applies it within a fully-fledged statistical arbitrage framework to minute-by-minute data of the S&P 500 constituents from 1998 to 2015. Specifically, the algorithm efficiently determines the optimal non-linear mapping and the corresponding lead–lag structure between two time series. Afterwards, this study explores the use of optimal causal paths as a means for identifying promising stock pairs and for generating buy and sell signals. For this purpose, the established trading strategy exploits information about the leading stock to predict future returns of the following stock. The value-add of the proposed framework is assessed by benchmarking it with variants relying on classic similarity measures and a buy-and-hold investment in the S&P 500 index. In the empirical back-testing study, the trading algorithm generates statistically and economically significant returns of 54.98% p.a. and an annualized Sharpe ratio of 3.57 after transaction costs. Returns are well superior to the benchmark approaches and do not load on any common sources of systematic risk. The strategy outperforms in the context of cryptocurrencies even in recent times due to the fact that stock returns contain substantial information about the future bitcoin returns.

[1]  Didier Sornette,et al.  Non-parametric determination of real-time lag structure between two time series: the ‘optimal thermal causal path’ method , 2004, cond-mat/0408166.

[2]  Usman W. Chohan,et al.  Cryptocurrencies: A Brief Thematic Review , 2017 .

[3]  J. Jacod,et al.  Testing for jumps in noisy high frequency data , 2012 .

[4]  William N. Goetzmann,et al.  Pairs Trading: Performance of a Relative Value Arbitrage Rule , 1998 .

[5]  Johannes Stübinger,et al.  Statistical Arbitrage Pairs Trading with High-frequency Data , 2017 .

[6]  The Application of Dynamic Time Warping to the Quality Evaluation of Radix Puerariae thomsonii: Correcting Retention Time Shift in the Chromatographic Fingerprints. , 2015, Journal of chromatographic science.

[7]  Pierre Giot,et al.  Market Models: A Guide to Financial Data Analysis , 2003 .

[8]  I. Elamvazuthi,et al.  Voice Recognition Algorithms using Mel Frequency Cepstral Coefficient (MFCC) and Dynamic Time Warping (DTW) Techniques , 2010, ArXiv.

[9]  Philip Chan,et al.  Toward accurate dynamic time warping in linear time and space , 2007, Intell. Data Anal..

[10]  R. Cont Empirical properties of asset returns: stylized facts and statistical issues , 2001 .

[11]  Feng Li,et al.  Empirical Investigation of an Equity Pairs Trading Strategy , 2017, Manag. Sci..

[12]  R. Faff,et al.  Does Simple Pairs Trading Still Work? , 2010 .

[13]  Eamonn J. Keogh,et al.  Searching and Mining Trillions of Time Series Subsequences under Dynamic Time Warping , 2012, KDD.

[14]  C. Krauss,et al.  Statistical arbitrage with vine copulas , 2018 .

[15]  D. McFadden,et al.  MIXED MNL MODELS FOR DISCRETE RESPONSE , 2000 .

[16]  Zhou Zhou,et al.  “A Tale of Two Time Scales: Determining Integrated Volatility with Noisy High-Frequency Data” , 2005 .

[17]  F. Itakura,et al.  Minimum prediction residual principle applied to speech recognition , 1975 .

[18]  Hui Ding,et al.  Querying and mining of time series data: experimental comparison of representations and distance measures , 2008, Proc. VLDB Endow..

[19]  J. Bollinger Bollinger on Bollinger Bands , 2001 .

[20]  Biing-Hwang Juang,et al.  Fundamentals of speech recognition , 1993, Prentice Hall signal processing series.

[21]  C. Myers,et al.  A level building dynamic time warping algorithm for connected word recognition , 1981 .

[22]  W. Bolt Bitcoin and Cryptocurrency Technologies : A Comprehensive Introduction , 2017 .

[23]  Eamonn J. Keogh,et al.  Exact indexing of dynamic time warping , 2002, Knowledge and Information Systems.

[24]  Meinard Müller,et al.  Information retrieval for music and motion , 2007 .

[25]  M. Elbeck,et al.  Bitcoins as an investment or speculative vehicle? A first look , 2015 .

[26]  E. Fama,et al.  A Five-Factor Asset Pricing Model , 2014 .

[27]  Johannes Stübinger,et al.  Pairs trading with a mean-reverting jump–diffusion model on high-frequency data , 2018 .

[28]  Lan Zhang,et al.  A Tale of Two Time Scales , 2003 .

[29]  Tai-Yi Yu,et al.  by using Principal Component Analysis , 1999 .

[30]  Ladislav Kristoufek,et al.  What Are the Main Drivers of the Bitcoin Price? Evidence from Wavelet Coherence Analysis , 2014, PloS one.

[31]  Meinard Müller,et al.  Memory-restricted multiscale dynamic time warping , 2016, 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[32]  R. Faff,et al.  Are Pairs Trading Profits Robust to Trading Costs , 2012 .

[33]  Rand Kwong Yew Low,et al.  The profitability of pairs trading strategies: distance, cointegration and copula methods , 2016 .

[34]  Pavel Senin,et al.  Dynamic Time Warping Algorithm Review , 2008 .

[35]  Chi Xie,et al.  Similarity measure and topology evolution of foreign exchange markets using dynamic time warping method: Evidence from minimal spanning tree , 2012 .

[36]  Matthew Clegg,et al.  Pairs trading with partial cointegration , 2018 .

[37]  Jiang Jiang,et al.  A Bayesian approach for sleep and wake classification based on dynamic time warping method , 2017, Multimedia Tools and Applications.

[38]  James R. Glass,et al.  Fast spoken query detection using lower-bound Dynamic Time Warping on Graphical Processing Units , 2012, 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[39]  Didier Sornette,et al.  Non-parametric determination of real-time lag structure between two time series: The "optimal thermal causal path" method with applications to economic data , 2006 .

[40]  Nicolas Huck,et al.  Pairs trading and selection methods: is cointegration superior? , 2015 .

[41]  G. Vidyamurthy Pairs Trading: Quantitative Methods and Analysis , 2004 .

[42]  Arvind Narayanan,et al.  Bitcoin and Cryptocurrency Technologies - A Comprehensive Introduction , 2016 .

[43]  Mariana Sátiro Coelho Patterns in financial markets: Dynamic time warping , 2012 .

[44]  Christina Malamateniou,et al.  Quantitative Methods and Analysis , 2020 .

[45]  Jae H. Kim,et al.  Stock Return Predictability and the Adaptive Markets Hypothesis: Evidence from Century Long U.S. Data , 2010 .

[46]  B.-H. Juang,et al.  On the hidden Markov model and dynamic time warping for speech recognition — A unified view , 1984, AT&T Bell Laboratories Technical Journal.

[47]  K. Pearson VII. Note on regression and inheritance in the case of two parents , 1895, Proceedings of the Royal Society of London.

[48]  Eamonn J. Keogh,et al.  Scaling up dynamic time warping for datamining applications , 2000, KDD '00.

[49]  Jun Heo,et al.  Time series regression-based pairs trading in the Korean equities market , 2017, J. Exp. Theor. Artif. Intell..

[50]  Aaron E. Rosenberg,et al.  Performance tradeoffs in dynamic time warping algorithms for isolated word recognition , 1980 .

[51]  V. L. Raju Chinthalapati,et al.  High Frequency Statistical Arbitrage Via the Optimal Thermal Causal Path , 2012 .

[52]  J. Stübinger,et al.  Optimal trading strategies for Lévy-driven Ornstein–Uhlenbeck processes , 2019, Applied Economics.

[53]  Q Li,et al.  Dynamic time warping and machine learning for signal quality assessment of pulsatile signals , 2012, Physiological measurement.

[54]  Mark Cummins,et al.  Quantitative spread trading on crude oil and refined products markets , 2011 .

[55]  M. Avellaneda,et al.  Statistical arbitrage in the US equities market , 2010 .

[56]  Symmetric thermal optimal path and time-dependent lead-lag relationship: novel statistical tests and application to UK and US real-estate and monetary policies , 2014, 1408.5618.

[57]  Meinard Müller,et al.  An Efficient Multiscale Approach to Audio Synchronization , 2006, ISMIR.

[58]  Michael Grottke,et al.  Exploiting social media with higher-order Factorization Machines: statistical arbitrage on high-frequency data of the S&P 500 , 2018, Quantitative Finance.

[59]  Tarik Arici,et al.  Robust gesture recognition using feature pre-processing and weighted dynamic time warping , 2014, Multimedia Tools and Applications.

[60]  E. Mendoza,et al.  How Big (Small?) are Fiscal Multipliers? , 2010, SSRN Electronic Journal.

[61]  Dimitrios Gunopulos,et al.  Discovering similar multidimensional trajectories , 2002, Proceedings 18th International Conference on Data Engineering.

[62]  S. Chiba,et al.  Dynamic programming algorithm optimization for spoken word recognition , 1978 .

[63]  Jamal Bouoiyour,et al.  What drives Bitcoin price , 2016 .

[64]  S. Nakamoto,et al.  Bitcoin: A Peer-to-Peer Electronic Cash System , 2008 .

[65]  Javid Taheri,et al.  SparseDTW: A Novel Approach to Speed up Dynamic Time Warping , 2009, AusDM.

[66]  Lars Stentoft,et al.  Refining the least squares Monte Carlo method by imposing structure , 2013 .

[67]  Ophélie Fovet,et al.  Identifying seasonal patterns of phosphorus storm dynamics with dynamic time warping , 2015 .

[68]  Gustavo E. A. P. A. Batista,et al.  Speeding Up All-Pairwise Dynamic Time Warping Matrix Calculation , 2016, SDM.

[69]  Mark C. Hutchinson,et al.  Pairs trading in the UK equity market: risk and return , 2014 .

[70]  E. Fama,et al.  Multifactor Explanations of Asset Pricing Anomalies , 1996 .

[71]  George J. Miao High Frequency and Dynamic Pairs Trading Based on Statistical Arbitrage Using a Two-Stage Correlation and Cointegration Approach , 2014 .

[72]  R. Manmatha,et al.  Word image matching using dynamic time warping , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[73]  Hong Cheng,et al.  An image-to-class dynamic time warping approach for both 3D static and trajectory hand gesture recognition , 2016, Pattern Recognit..

[74]  Dacheng Xiu,et al.  Using Principal Component Analysis to Estimate a High Dimensional Factor Model with High-Frequency Data , 2016 .

[75]  Donald J. Berndt,et al.  Using Dynamic Time Warping to Find Patterns in Time Series , 1994, KDD Workshop.