Model Selection using Response Measurements: Bayesian Probabilistic Approach

A Bayesian probabilistic approach is presented for selecting the most plausible class of models for a structural or mechanical system within some specified set of model classes, based on system response data. The crux of the approach is to rank the classes of models based on their probabilities conditional on the response data which can be calculated based on Bayes’ theorem and an asymptotic expansion for the evidence for each model class. The approach provides a quantitative expression of a principle of model parsimony or of Ockham’s razor which in this context can be stated as “simpler models are to be preferred over unnecessarily complicated ones.” Examples are presented to illustrate the method using a single-degree-of-freedom bilinear hysteretic system, a linear two-story frame, and a ten-story shear building, all of which are subjected to seismic excitation.

[1]  L. M. M.-T. Theory of Probability , 1929, Nature.

[2]  R. T. Cox The Algebra of Probable Inference , 1962 .

[3]  R. T. Cox,et al.  The Algebra of Probable Inference , 1962 .

[4]  Solomon Kullback,et al.  Information Theory and Statistics , 1970, The Mathematical Gazette.

[5]  P. Young,et al.  Time series analysis, forecasting and control , 1972, IEEE Transactions on Automatic Control.

[6]  G. C. Tiao,et al.  Bayesian inference in statistical analysis , 1973 .

[7]  H. Akaike A new look at the statistical model identification , 1974 .

[8]  P. Krishnaiah,et al.  Some recent developments on complex multivariate distributions , 1976 .

[9]  W. Gersch,et al.  Structural System Parameter Estimation by Two-Stage Least Squares Method , 1976 .

[10]  Hirotugu Akaike,et al.  On entropy maximization principle , 1977 .

[11]  J. Ware,et al.  Applications of Statistics , 1978 .

[12]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[13]  James L. Beck,et al.  Determining models of structures from earthquake records , 1978 .

[14]  Mircea Grigoriu,et al.  Probabilistic Modelling as Decision Making , 1979 .

[15]  E. T. Jaynes,et al.  Papers on probability, statistics and statistical physics , 1983 .

[16]  M. Hoshiya,et al.  Structural Identification by Extended Kalman Filter , 1984 .

[17]  S. Gull Bayesian Inductive Inference and Maximum Entropy , 1988 .

[18]  Yong-Lin Pi,et al.  Modal Identification of Vibrating Structures Using ARMA Model , 1989 .

[19]  David J. C. MacKay,et al.  Bayesian Interpolation , 1992, Neural Computation.

[20]  Sharon L. Wood,et al.  Mutual Residual Energy Method for Parameter Estimation in Structures , 1992 .

[21]  John E. Mottershead,et al.  Model Updating In Structural Dynamics: A Survey , 1993 .

[22]  M. W. Vanik,et al.  Bayesian Probabilistic Approach to Structural Health Monitoring , 1998 .

[23]  J. Beck,et al.  Asymptotic Expansions for Reliability and Moments of Uncertain Systems , 1997 .

[24]  J. Beck,et al.  UPDATING MODELS AND THEIR UNCERTAINTIES. II: MODEL IDENTIFIABILITY. TECHNICAL NOTE , 1998 .

[25]  C. Papadimitriou,et al.  A probabilistic approach to structural model updating , 1998 .

[26]  J. Beck,et al.  Updating Models and Their Uncertainties. I: Bayesian Statistical Framework , 1998 .

[27]  Wenping Wang,et al.  System identification of linear MDOF structures under ambient excitation , 1999 .

[28]  Masoud Sanayei,et al.  PARAMETER ESTIMATION INCORPORATING MODAL DATA AND BOUNDARY CONDITIONS , 1999 .

[29]  Nicholas P. Jones,et al.  SIMULTANEOUS ESTIMATION OF SYSTEM AND INPUT PARAMETERS FROM OUTPUT MEASUREMENTS , 2000 .

[30]  R S Pappa,et al.  On-Line Database of Vibration-Based Damage Detection Experiments , 2000 .

[31]  Lambros S. Katafygiotis,et al.  Bayesian spectral density approach for modal updating using ambient data , 2001 .

[32]  Lambros S. Katafygiotis,et al.  Bayesian time–domain approach for modal updating using ambient data , 2001 .

[33]  Ka-Veng Yuen,et al.  Model selection, identification and robust control for dynamical systems , 2002 .

[34]  Lambros S. Katafygiotis,et al.  Probabilistic approach for modal identification using non‐stationary noisy response measurements only , 2002 .

[35]  Lambros S. Katafygiotis,et al.  Bayesian modal updating using complete input and incomplete response noisy measurements , 2002 .

[36]  J. Beck,et al.  Bayesian Updating of Structural Models and Reliability using Markov Chain Monte Carlo Simulation , 2002 .

[37]  J. Beck,et al.  Spectral density estimation of stochastic vector processes , 2002 .

[38]  Edwin Thompson Jaynes,et al.  Probability theory , 2003 .

[39]  James L. Beck,et al.  Updating Properties of Nonlinear Dynamical Systems with Uncertain Input , 2003 .

[40]  M. Tribus,et al.  Probability theory: the logic of science , 2003 .