A homogenized energy framework for ferromagnetic hysteresis

This paper focuses on the development of a homogenized energy model which quantifies certain facets of the direct magnetomechanical effect. In the first step of the development, Gibbs energy analysis at the lattice level is combined with Boltzmann principles to quantify the local average magnetization as a function of input fields and stresses. A macroscopic magnetization model, which incorporates the effects of polycrystallinity, material nonhomogeneities, stress-dependent interaction fields, and stress-dependent coercive behavior, is constructed through stochastic homogenization techniques based on the tenet that local coercive and interaction fields are manifestations of underlying distributions rather than constants. The resulting framework incorporates previous ferromagnetic hysteresis theory as a special case in the absence of applied stresses. Attributes of the framework are illustrated through comparison with previously published steel and iron data

[1]  Harvey Thomas Banks,et al.  Identification of Hysteretic Control Influence Operators Representing Smart Actuators Part I: Formulation , 1997 .

[2]  S. Seeleckei,et al.  Optimal Control Of Beam Structures By Shape Memory Wires , 1970 .

[3]  Amikam Aharoni,et al.  Introduction to the Theory of Magnetism , 1998 .

[4]  H. Banks,et al.  Identification of Hysteretic Control Influence Operators Representing Smart Actuators, Part II: Convergent Approximations , 1997 .

[5]  Daniel Zwillinger,et al.  CRC standard mathematical tables and formulae; 30th edition , 1995 .

[6]  Thomas J. Royston,et al.  Modeling the effect of piezoceramic hysteresis in structural vibration control , 2001, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[7]  David Jiles,et al.  Theoretical modelling of the effects of anisotropy and stress on the magnetization and magnetostriction of Tb0.3Dy0.7Fe2 , 1994 .

[8]  David Jiles,et al.  Modelling the effects of eddy current losses on frequency dependent hysteresis in electrically conducting media , 1994 .

[9]  E. Ising Beitrag zur Theorie des Ferromagnetismus , 1925 .

[10]  E. Lee,et al.  Magnetic behaviour of single-domain particles , 1966 .

[11]  G. C.,et al.  Electricity and Magnetism , 1888, Nature.

[12]  David L. Atherton,et al.  Inclusive model of ferromagnetic hysteresis , 2002 .

[13]  M. Brokate,et al.  Hysteresis and Phase Transitions , 1996 .

[14]  Mayergoyz,et al.  Mathematical models of hysteresis. , 1986, Physical review letters.

[15]  Stefan Seelecke,et al.  A Stress-dependent Hysteresis Model for Ferroelectric Materials , 2007 .

[16]  Ralph C. Smith Smart Material Systems , 2005 .

[17]  K. H. Carpenter,et al.  A differential equation approach to minor loops in the Jiles-Atherton hysteresis model , 1991 .

[18]  Ralph C. Smith,et al.  A free energy model for thin-film shape memory alloys , 2003, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[19]  Ralph C. Smith,et al.  Control design for a magnetostrictive transducer , 2003 .

[20]  Lev Davidovich Landau,et al.  ON THE THEORY OF THE DISPERSION OF MAGNETIC PERMEABILITY IN FERROMAGNETIC BODIES , 1935 .

[21]  P. Krejčí,et al.  On a System of Nonlinear PDEs with Temperature-Dependent Hysteresis in One-Dimensional Thermoplasticity , 1997 .

[22]  Stefan Seelecke,et al.  Modeling the dynamic behavior of shape memory alloys , 2002 .

[23]  Stefan Seelecke,et al.  Energy formulation for Preisach models , 2002, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[24]  M. Krasnosel’skiǐ,et al.  Systems with Hysteresis , 1989 .

[25]  D. Jiles Theory of the magnetomechanical effect , 1995 .

[26]  H. Stanley,et al.  Introduction to Phase Transitions and Critical Phenomena , 1972 .

[27]  C. Graham,et al.  Introduction to Magnetic Materials , 1972 .

[28]  Anthony Arrott,et al.  Introduction to the theory of ferromagnetism , 1996 .

[29]  Joshua R. Smith,et al.  A Free Energy Model for Hysteresis in Ferroelectric Materials , 2003, Journal of Intelligent Material Systems and Structures.

[30]  D. Ter Haar,et al.  Elements of Statistical Mechanics , 1954 .

[31]  W. Heisenberg Zur Theorie des Ferromagnetismus , 1928 .

[32]  Jordan E. Massad,et al.  A homogenized free energy model for hysteresis in thin-film shape memory alloys , 2005 .

[33]  David Jiles,et al.  A self consistent generalized model for the calculation of minor loop excursions in the theory of hysteresis , 1992, 1992. Digests of Intermag. International Magnetics Conference.

[34]  Ralph C. Smith,et al.  H/spl infin/ control design for a magnetostrictive transducer , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[35]  Ralph C. Smith,et al.  A temperature-dependent hysteresis model for relaxor ferroelectric compounds , 2004, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[36]  Ram Venkataraman,et al.  On the identification of Preisach measures , 2003, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[37]  E. Torre,et al.  Parameter identification of the complete-moving-hysteresis model using major loop data , 1994 .

[38]  D. Jiles,et al.  Numerical determination of hysteresis parameters for the modeling of magnetic properties using the theory of ferromagnetic hysteresis , 1992 .

[39]  Craig L. Hom,et al.  Domain Wall Theory for Ferroelectric Hysteresis , 1999 .

[40]  David L. Atherton,et al.  A mean field Stoner-Wohlfarth hysteresis model , 1990 .

[41]  W. Brown Domains, micromagnetics, and beyond: Reminiscences and assessments , 1978 .

[42]  William D. Armstrong,et al.  Magnetization and magnetostriction processes in Tb(0.27−0.30)Dy(0.73−0.70)Fe(1.9−2.0) , 1997 .

[43]  Andrew G. Hatch,et al.  Parameter estimation techniques for a class of nonlinear hysteresis models , 2005 .

[44]  Ralph C. Smith,et al.  Model-Based Robust Control Design for Magnetostrictive Transducers Operating in Hysteretic and Nonlinear Regimes , 2007, IEEE Transactions on Control Systems Technology.

[45]  Ralph C. Smith,et al.  Smart material systems - model development , 2005, Frontiers in applied mathematics.

[46]  Wyn Williams,et al.  Three-dimensional micromagnetic modelling of ferromagnetic domain structure , 1989, Nature.

[47]  Stefan Seelecke,et al.  A unified framework for modeling hysteresis in ferroic materials , 2006 .

[48]  Alison B. Flatau,et al.  An Energy-Based Hysteresis Model for Magnetostrictive Transducers , 1997 .

[49]  Alison B. Flatau,et al.  A Coupled Structural-Magnetic Strain and Stress Model for Magnetostrictive Transducers , 2000 .

[50]  S. Chikazumi Physics of ferromagnetism , 1997 .

[51]  E. Wohlfarth,et al.  A mechanism of magnetic hysteresis in heterogeneous alloys , 1991 .

[52]  W. Bragg,et al.  The effect of thermal agitation on atomic arrangement in alloys , 1935 .

[53]  Jordan E. Massad,et al.  A unified methodology for modeling hysteresis in ferroelectric, ferromagnetic and ferroelastic materials , 2001 .

[54]  F. Preisach Über die magnetische Nachwirkung , 1935 .

[55]  S. Lang Real and Functional Analysis , 1983 .

[56]  Xiaobo Tan,et al.  Control of hysteresis: theory and experimental results , 2001, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[57]  Ralph C. Smith,et al.  Efficient implementation algorithm for a homogenized energy model with thermal relaxation , 2005, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[58]  W. Gorsky Röntgenographische Untersuchung von Umwandlungen in der Legierung Cu Au , 1928 .

[59]  Stefan Seelecke,et al.  Shape memory alloy actuators in smart structures: Modeling and simulation , 2004 .

[60]  B. Phelps,et al.  Macroscopic models of magnetization , 2000 .

[61]  A. Globus,et al.  Separation of susceptibility mechanisms for ferrites of low anisotropy , 1966 .

[62]  Alison B. Flatau,et al.  Structural magnetic strain model for magnetostrictive transducers , 2000 .

[63]  D. Jiles,et al.  Theory of ferromagnetic hysteresis , 1986 .

[64]  Stefan Seelecke,et al.  Free energy model for hysteresis in magnetostrictive transducers , 2003 .

[65]  Mark L. Spano,et al.  Effect of stress on the magnetostriction and magnetization of single crystal Tb .27 Dy .73 Fe 2 , 1984 .

[66]  Stefan Seelecke,et al.  A unified model for hysteresis in ferroic materials , 2003, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[67]  David L. Atherton,et al.  CORRIGENDUM: Theory of the magnetisation process in ferromagnets and its application to the magnetomechanical effect , 1984 .

[68]  D. Jiles,et al.  Application Of The Anisotropic Extension Of The Theory Of Hysteresis To The Magnetization Curves Of Crystalline And Textured Magnetic Materials. , 1997, 1997 IEEE International Magnetics Conference (INTERMAG'97).

[69]  William Fuller Brown,et al.  Magnetostatic principles in Ferromagnetism , 1962 .

[70]  R. Tebble,et al.  Ferromagnetism and ferromagnetic domains , 1965 .

[71]  Marcelo J. Dapino,et al.  A homogenized energy model for the direct magnetomechanical effect , 2006, IEEE Transactions on Magnetics.