Analysis of copper-rich precipitates in silicon: chemical state, gettering, and impact on multicrystalline silicon solar cell material

In this study, synchrotron-based x-ray absorption microspectroscopy (mu-XAS) is applied to identifying the chemical states of copper-rich clusters within a variety of silicon materials, including as-grown cast multicrystalline silicon solar cell material with high oxygen concentration and other silicon materials with varying degrees of oxygen concentration and copper contamination pathways. In all samples, copper silicide (Cu3Si) is the only phase of copper identified. It is noted from thermodynamic considerations that unlike certain metal species, copper tends to form a silicide and not an oxidized compound because of the strong silicon-oxygen bonding energy; consequently the likelihood of encountering an oxidized copper particle in silicon is small, in agreement with experimental data. In light of these results, the effectiveness of aluminum gettering for the removal of copper from bulk silicon is quantified via x-ray fluorescence microscopy (mu-XRF),and a segregation coefficient is determined from experimental data to beat least (1-2)'103. Additionally, mu-XAS data directly demonstrates that the segregation mechanism of Cu in Al is the higher solubility of Cu in the liquid phase. In light of these results, possible limitations for the complete removal of Cu from bulk mc-Si are discussed.

[1]  Richard Celestre,et al.  Beamline 10.3.2 at ALS: a hard X-ray microprobe for environmental and materials sciences. , 2004, Journal of synchrotron radiation.

[2]  T. Buonassisi,et al.  X-ray beam induced current/microprobe x-ray fluorescence: synchrotron radiation based x-ray microprobe techniques for analysis of the recombination activity and chemical nature of metal impurities in silicon , 2004 .

[3]  O. Breitenstein,et al.  Observation of transition metals at shunt locations in multicrystalline silicon solar cells , 2004 .

[4]  B. Lai,et al.  Applications of synchrotron radiation X-ray techniques on the analysis of the behavior of transition metals in solar cells and single-crystalline silicon with extended defects , 2003 .

[5]  M. Kittler,et al.  Estimation of the Upper Limit of the Minority-Carrier Diffusion Length in Multicrystalline Silicon: Limitation of the Action of Gettering and Passivation on Dislocations , 2003 .

[6]  J. Kalejs,et al.  Metal Content of Multicrystalline Silicon for Solar Cells and its Impact on Minority Carrier Diffusion Length , 2003 .

[7]  S. Estreicher,et al.  Copper interactions with H, O, and the self-interstitial in silicon , 2003 .

[8]  M. Iwami,et al.  Valence band density of states of Cu3Si studied by soft X-ray emission spectroscopy and a first-principle molecular orbital calculation , 2002 .

[9]  T. Buonassisi,et al.  Application of synchrotron-radiation-based x-ray microprobe techniques for the analysis of recombination activity of metals precipitated at Si/SiGe misfit dislocations , 2002 .

[10]  B. Lai,et al.  Copper precipitates in silicon: Precipitation, dissolution, and chemical state , 2002 .

[11]  Eicke R. Weber,et al.  Defect recognition and impurity detection techniques in crystalline silicon for solar cells , 2002 .

[12]  T. Wang,et al.  Silicon defect and impurity studies using float-zone crystal growth as a tool , 2002 .

[13]  T. Buonassisi,et al.  X-ray beam induced current—a synchrotron radiation based technique for the in situ analysis of recombination properties and chemical nature of metal clusters in silicon , 2002 .

[14]  S. Sutton,et al.  Applications of Synchrotron Radiation in Low-Temperature Geochemistry and Environmental Science , 2002 .

[15]  Eicke R. Weber,et al.  Physics of Copper in Silicon , 2002 .

[16]  A. Istratov,et al.  Recombination activity of copper in silicon , 2001 .

[17]  M. Werner,et al.  Nanometer-scale metal precipitates in multicrystalline silicon solar cells , 2001 .

[18]  S. Myers,et al.  Copper gettering by aluminum precipitates in aluminum-implanted silicon , 2001 .

[19]  H. D. Bist,et al.  Thin film of aluminum oxide through pulsed laser deposition: a micro-Raman study , 2001 .

[20]  Seifert,et al.  Out-diffusion and precipitation of copper in silicon: An electrostatic model , 2000, Physical review letters.

[21]  R. Celestre,et al.  Synchrotron-based impurity mapping , 2000 .

[22]  B. Lai,et al.  Performance of a high-resolution x-ray microprobe at the Advanced Photon Source , 1999 .

[23]  E. Weber,et al.  Metal impurity precipitates in silicon: chemical state and stability , 1999 .

[24]  S. Estreicher Rich chemistry of copper in crystalline silicon , 1999 .

[25]  B. Lai,et al.  Nanometer focusing of hard x rays by phase zone plates , 1999 .

[26]  Robert Hull,et al.  Properties of Crystalline Silicon , 1999 .

[27]  W. Schröter,et al.  STRUCTURAL AND ELECTRICAL PROPERTIES OF METAL SILICIDE PRECIPITATES IN SILICON , 1999 .

[28]  W. Schröter,et al.  Electrical and recombination properties of copper-silicide precipitates in silicon , 1998 .

[29]  Eicke R. Weber,et al.  Intrinsic Diffusion Coefficient of Interstitial Copper in Silicon , 1998 .

[30]  W. Schröter,et al.  Formation and Properties of Copper Silicide Precipitates in Silicon , 1998 .

[31]  M. Marcus,et al.  Precipitation of Al2Cu in blanket Al-Cu films , 1997 .

[32]  S. McHugo,et al.  Release of metal impurities from structural defects in polycrystalline silicon , 1997 .

[33]  Bernd O. Kolbesen,et al.  Proceedings of the Symposium on Crystalline Defects and Contamination, their Impact and Control in Device Manufacturing II , 1997 .

[34]  L. Magaud,et al.  Electronic structure of Cu3Si , 1996 .

[35]  Rong Zhang,et al.  Precipitation of Cu and Fe in Dislocated Floating-Zone-Grown Silicon , 1996 .

[36]  M. Kittler,et al.  Influence of copper contamination on recombination activity of misfit dislocations in SiGe/Si epilayers: Temperature dependence of activity as a marker characterizing the contamination level , 1995 .

[37]  B. Shen,et al.  Gettering of copper by bulk stacking faults and punched‐out dislocations in Czochralski‐grown silicon , 1994 .

[38]  W. Schröter,et al.  Aluminum gettering of cobalt in silicon , 1994 .

[39]  G. Rozgonyi,et al.  Low‐temperature gettering of trace iron and copper by misfit dislocations in Si/Si(Ge) epitaxy , 1994 .

[40]  X. Portier,et al.  Electrical and structural studies of copper and nickel precipitates in a Σ=25 silicon bicrystal , 1994 .

[41]  H. Richter,et al.  Copper silicide precipitation influenced by the strain of a Ge0.02Si0.98 heteroepitaxial layer , 1994 .

[42]  A. Broniatowski Carrier trapping and recombination at copper-decorated grain boundaries in silicon , 1992 .

[43]  J. Kalejs,et al.  Segregation and impurity effects in silicon grown from the melt in the presence of second phase formation , 1991 .

[44]  King-Ning Tu,et al.  Formation, oxidation, electronic, and electrical properties of copper silicides , 1990 .

[45]  C. Colliex,et al.  Fast diffusers Cu and Ni as the origin of electrical activity in a silicon grain boundary , 1989 .

[46]  P. N. Gibson,et al.  ReflEXAFS investigation of the local atomic structure around Fe during the oxidation of stainless steel , 1989 .

[47]  M. Seibt,et al.  Characterization of haze‐forming precipitates in silicon , 1988 .

[48]  Mark L. Rivers,et al.  Elemental measurements with an X-ray microprobe of biological and geological samples with femtogram sensitivity , 1988 .

[49]  Eicke R. Weber,et al.  Transition metals in silicon , 1983 .

[50]  K. Tu,et al.  Low temperature gettering of Cu, Ag, and Au across a wafer of Si by Al , 1982 .

[51]  S. Murarka,et al.  Thermal oxidation of hafnium silicide films on silicon , 1980 .

[52]  J. K. Solberg The crystal structure of η-Cu3Si precipitates in silicon , 1978 .

[53]  G. Das Precipitation of copper in silicon , 1973 .

[54]  R. C. Weast CRC Handbook of Chemistry and Physics , 1973 .

[55]  G. Lunde,et al.  Copper Precipitate Colonies in Silicon , 1972 .

[56]  E. Nes,et al.  Precipitate Colonies in Silicon , 1972 .

[57]  A. D. Kock,et al.  VACANCY CLUSTERS IN DISLOCATION‐FREE SILICON , 1970 .

[58]  R. N. Hall,et al.  Diffusion and Solubility of Copper in Extrinsic and Intrinsic Germanium, Silicon, and Gallium Arsenide , 1964 .

[59]  G. Schwuttke Study of Copper Precipitation Behavior in Silicon Single Crystals , 1961 .

[60]  W. C. Dash Growth of Silicon Crystals Free from Dislocations , 1959 .

[61]  W. C. Dash,et al.  Copper Precipitation on Dislocations in Silicon , 1956 .