Rescuing ecosystems from extinction cascades through compensatory perturbations.

Food-web perturbations stemming from climate change, overexploitation, invasive species and habitat degradation often cause an initial loss of species that results in a cascade of secondary extinctions, posing considerable challenges to ecosystem conservation efforts. Here, we devise a systematic network-based approach to reduce the number of secondary extinctions using a predictive modelling framework. We show that the extinction of one species can often be compensated by the concurrent removal or population suppression of other specific species, a counterintuitive effect not previously tested in complex food webs. These compensatory perturbations frequently involve long-range interactions that are not evident from local predator-prey relationships. In numerous cases, even the early removal of a species that would eventually go extinct is found to significantly reduce the number of cascading extinctions. These compensatory perturbations only exploit resources available in the system, and illustrate the potential of human intervention combined with predictive modelling for ecosystem management.

[1]  Robert M. May,et al.  Limit Cycles in Predator-Prey Communities , 1972, Science.

[2]  ROBERT M. MAY,et al.  Will a Large Complex System be Stable? , 1972, Nature.

[3]  Editorial: Handle with care , 1976, Veterinary Record.

[4]  Leslie A. Real,et al.  The Kinetics of Functional Response , 1977, The American Naturalist.

[5]  M. Shaffer Minimum Population Sizes for Species Conservation , 1981 .

[6]  R. Peters The Ecological Implications of Body Size , 1983 .

[7]  J. W. Turner,et al.  Chemical Fertility Control and Wildlife Management , 1985 .

[8]  R. Ulanowicz,et al.  The Seasonal Dynamics of The Chesapeake Bay Ecosystem , 1989 .

[9]  Charles M. Newman,et al.  Stochastic structure and nonlinear dynamics of food webs: qualitative stability in a Lotka-Volterra cascade model , 1990, Proceedings of the Royal Society of London. B. Biological Sciences.

[10]  G. Polis,et al.  Complex Trophic Interactions in Deserts: An Empirical Critique of Food-Web Theory , 1991, The American Naturalist.

[11]  Clyde Arthur Morrison,et al.  Theory and Data , 1992 .

[12]  P. Yodzis,et al.  Body Size and Consumer-Resource Dynamics , 1992, The American Naturalist.

[13]  Cole,et al.  Trophic cascades revealed in diverse ecosystems. , 1999, Trends in ecology & evolution.

[14]  M. Soulé,et al.  Mesopredator release and avifaunal extinctions in a fragmented system , 1999, Nature.

[15]  Tomas Jonsson,et al.  Biodiversity lessens the risk of cascading extinction in model food webs , 2000 .

[16]  Neo D. Martinez,et al.  Simple rules yield complex food webs , 2000, Nature.

[17]  D. Pimentel,et al.  Environmental and Economic Costs of Nonindigenous Species in the United States , 2000 .

[18]  C. Josh Donlan,et al.  Golden eagles, feral pigs, and insular carnivores: How exotic species turn native predators into prey , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[19]  Ricard V. Solé,et al.  Complexity and fragility in ecological networks , 2000, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[20]  K. Bjorndal,et al.  Historical Overfishing and the Recent Collapse of Coastal Ecosystems , 2001, Science.

[21]  C. Kolar,et al.  Progress in invasion biology: predicting invaders. , 2001, Trends in ecology & evolution.

[22]  S. Carpenter,et al.  Catastrophic shifts in ecosystems , 2001, Nature.

[23]  Gerd Heber,et al.  Food web complexity and chaotic population dynamics , 2002 .

[24]  Neo D. Martinez,et al.  Network structure and biodiversity loss in food webs: robustness increases with connectance , 2002, Ecology Letters.

[25]  F. Courchamp,et al.  Mammal invaders on islands: impact, control and control impact , 2003, Biological reviews of the Cambridge Philosophical Society.

[26]  G. Roemer,et al.  Removing Protected Populations to Save Endangered Species , 2003, Science.

[27]  Barry W. Brook,et al.  Catastrophic extinctions follow deforestation in Singapore , 2003, Nature.

[28]  Stefano Allesina,et al.  Who dominates whom in the ecosystem? Energy flow bottlenecks and cascading extinctions. , 2004, Journal of theoretical biology.

[29]  Neo D. Martinez,et al.  Limits to Trophic Levels and Omnivory in Complex Food Webs: Theory and Data , 2004, The American Naturalist.

[30]  Jean-Pierre Gabriel,et al.  Phylogenetic constraints and adaptation explain food-web structure , 2004, Nature.

[31]  Adilson E Motter Cascade control and defense in complex networks. , 2004, Physical review letters.

[32]  Anthony R. Ives,et al.  Food-web interactions govern the resistance of communities after non-random extinctions , 2004, Nature.

[33]  C. Quince,et al.  Deleting species from model food webs , 2004, q-bio/0401037.

[34]  O. Phillips,et al.  Extinction risk from climate change , 2004, Nature.

[35]  B. Ebenman,et al.  COMMUNITY VIABILITY ANALYSIS: THE RESPONSE OF ECOLOGICAL COMMUNITIES TO SPECIES LOSS , 2004 .

[36]  Neo D. Martinez,et al.  Stabilization of chaotic and non-permanent food-web dynamics , 2004 .

[37]  Toshiyuki Namba,et al.  OMNIVORY CREATES CHAOS IN SIMPLE FOOD WEB MODELS , 2005 .

[38]  Werner Ulrich,et al.  BODY SIZES OF CONSUMERS AND THEIR RESOURCES , 2005 .

[39]  C. Donlan,et al.  Conservation action in the Galapagos: Feral pig (Sus scrofa) eradication from Santiago Island , 2005 .

[40]  Michael Hoffmann,et al.  The value of the IUCN Red List for conservation. , 2006, Trends in ecology & evolution.

[41]  Anna Eklöf,et al.  Species loss and secondary extinctions in simple and complex model communities. , 2006, The Journal of animal ecology.

[42]  Neo D. Martinez,et al.  Allometric scaling enhances stability in complex food webs. , 2006, Ecology letters.

[43]  Stefano Allesina,et al.  Network structure , predator-prey modules , and stability in large food webs : Electronic Supplementary Material ( ESM ) , 2007 .

[44]  Mark E Hauber,et al.  Spatial heterogeneity of mesopredator release within an oceanic island system , 2007, Proceedings of the National Academy of Sciences.

[45]  Charles H. Peterson,et al.  Supporting Online Material for Cascading Effects of the Loss of Apex Predatory Sharks from a Coastal Ocean , 2007 .

[46]  Owen L. Petchey,et al.  Trophically Unique Species Are Vulnerable to Cascading Extinction , 2008, The American Naturalist.

[47]  A. Hastings,et al.  Strong effect of dispersal network structure on ecological dynamics , 2008, Nature.

[48]  H. Possingham,et al.  Cost‐Effective Suppression and Eradication of Invasive Predators , 2008, Conservation biology : the journal of the Society for Conservation Biology.

[49]  Marta Coll,et al.  Structural Degradation in Mediterranean Sea Food Webs: Testing Ecological Hypotheses Using Stochastic and Mass-Balance Modelling , 2008, Ecosystems.

[50]  Richard J. Williams,et al.  Effects of network and dynamical model structure on species persistence in large model food webs , 2008, Theoretical Ecology.

[51]  A. Barabasi,et al.  Predicting synthetic rescues in metabolic networks , 2008, Molecular systems biology.

[52]  Kazuto Nakada,et al.  A General Model for Food Web Structure , 2008 .

[53]  H P Possingham,et al.  Assisted Colonization and Rapid Climate Change , 2008, Science.

[54]  Bruce D. Patterson,et al.  The Status of the World's Land and Marine Mammals: Diversity, Threat, and Knowledge , 2008, Science.

[55]  Dante R Chialvo,et al.  Emergent self-organized complex network topology out of stability constraints. , 2008, Physical review letters.

[56]  Robert M May,et al.  Food-web assembly and collapse: mathematical models and implications for conservation , 2009, Philosophical Transactions of the Royal Society B: Biological Sciences.

[57]  Neo D. Martinez,et al.  Simple prediction of interaction strengths in complex food webs , 2009, Proceedings of the National Academy of Sciences.

[58]  Jennifer A Dunne,et al.  Cascading extinctions and community collapse in model food webs , 2009, Philosophical Transactions of the Royal Society B: Biological Sciences.

[59]  Thilo Gross,et al.  Generalized Models Reveal Stabilizing Factors in Food Webs , 2009, Science.

[60]  G. Roemer,et al.  Does the Order of Invasive Species Removal Matter? The Case of the Eagle and the Pig , 2009, PloS one.

[61]  Jordi Bascompte,et al.  Understanding food-web persistence from local to global scales. , 2010, Ecology letters.

[62]  Caroline Swinburne,et al.  Handle with care , 2013, Nature.