A multiscale modeling technique for bridging molecular dynamics with finite element method

In computational mechanics, molecular dynamics (MD) and finite element (FE) analysis are well developed and most popular on nanoscale and macroscale analysis, respectively. MD can very well simulate the atomistic behavior, but cannot simulate macroscale length and time due to computational limits. FE can very well simulate continuum mechanics (CM) problems, but has the limitation of the lack of atomistic level degrees of freedom. Multiscale modeling is an expedient methodology with a potential to connect different levels of modeling such as quantum mechanics, molecular dynamics, and continuum mechanics. This study proposes a new multiscale modeling technique to couple MD with FE. The proposed method relies on weighted average momentum principle. A wave propagation example has been used to illustrate the challenges in coupling MD with FE and to verify the proposed technique. Furthermore, 2-Dimensional problem has also been used to demonstrate how this method would translate into real world applications. A weighted averaging momentum method is introduced for bridging molecular dynamics (MD) with finite element (FE) method.The proposed method shows excellent coupling results in 1-D and 2-D examples.The proposed method successfully reduces the spurious wave reflection at the border of MD and FE regions.Big advantages of the proposed method are simplicity and inexpensive computational cost of multiscale analysis.

[1]  W. Cai,et al.  Minimizing boundary reflections in coupled-domain simulations. , 2000, Physical review letters.

[2]  Noam Bernstein,et al.  Spanning the continuum to quantum length scales in a dynamic simulation of brittle fracture , 1998 .

[3]  Hiroshi Kadowaki,et al.  A multiscale approach for the micropolar continuum model , 2005 .

[4]  Bin Liu,et al.  The atomic-scale finite element method , 2004 .

[5]  J. Q. Broughton,et al.  Concurrent coupling of length scales: Methodology and application , 1999 .

[6]  M. Ortiz,et al.  Quasicontinuum analysis of defects in solids , 1996 .

[7]  Ronald E. Miller,et al.  Atomistic/continuum coupling in computational materials science , 2003 .

[8]  Rajiv K. Kalia,et al.  Coupling Length Scales for Multiscale Atomistics-Continuum Simulations , 2001 .

[9]  Xianqiao Wang,et al.  Multiscale Computation for Nano/Micromaterials , 2009 .

[10]  Harold S. Park,et al.  An introduction and tutorial on multiple-scale analysis in solids , 2004 .

[11]  Dimitri D. Vvedensky,et al.  Multiscale modelling of nanostructures , 2004 .

[12]  Harold S. Park,et al.  Nano Mechanics and Materials: Theory, Multiscale Methods and Applications , 2006 .

[13]  E Weinan,et al.  A dynamic atomistic-continuum method for the simulation of crystalline materials , 2001 .

[14]  E Weinan,et al.  Multiscale modeling of the dynamics of solids at finite temperature , 2005 .

[15]  Ronald E. Miller,et al.  The Quasicontinuum Method: Overview, applications and current directions , 2002 .

[16]  William A. Curtin,et al.  Multiscale plasticity modeling: coupled atomistics and discrete dislocation mechanics , 2004 .

[17]  Robert E. Rudd,et al.  COARSE-GRAINED MOLECULAR DYNAMICS AND THE ATOMIC LIMIT OF FINITE ELEMENTS , 1998 .

[18]  Shaoqiang Tang,et al.  A finite difference approach with velocity interfacial conditions for multiscale computations of crystalline solids , 2008, J. Comput. Phys..

[19]  Shaofan Li,et al.  Perfectly matched multiscale simulations , 2005 .

[20]  M. Ortiz,et al.  An analysis of the quasicontinuum method , 2001, cond-mat/0103455.

[21]  Gregory J. Wagner,et al.  Coupling of atomistic and continuum simulations using a bridging scale decomposition , 2003 .

[22]  T. Belytschko,et al.  A bridging domain method for coupling continua with molecular dynamics , 2004 .

[23]  Thomas Y. Hou,et al.  A pseudo-spectral multiscale method: Interfacial conditions and coarse grid equations , 2006, J. Comput. Phys..

[24]  N. Ghoniem,et al.  Multiscale modelling of nanomechanics and micromechanics: an overview , 2003 .

[25]  K. Fackeldey,et al.  The Weak Coupling Method for Coupling Continuum Mechanics with Molecular Dynamics , 2009 .

[26]  A. Nakano,et al.  Coupling length scales for multiscale atomistics-continuum simulations: atomistically induced stress distributions in Si/Si3N4 nanopixels. , 2001, Physical review letters.