Influences of tropical–extratropical interaction on the multidecadal AMOC variability in the NCEP climate forecast system

We have examined the mechanisms of a multidecadal oscillation of the Atlantic Meridional Overturning Circulation (AMOC) in a 335-year simulation of the Climate Forecast System (CFS), the climate prediction model developed at the National Centers for Environmental Prediction (NCEP). Both the mean and seasonal cycle of the AMOC in the CFS are generally consistent with observation-based estimates with a maximum northward volume transport of 16 Sv (106 m3/s) near 35°N at 1.2 km. The annual mean AMOC shows an intermittent quasi 30-year oscillation. Its dominant structure includes a deep anomalous overturning cell (referred to as the anomalous AMOC) with amplitude of 0.6 Sv near 35°N and an anomalous subtropical cell (STC) of shallow overturning spanning across the equator. The mechanism for the oscillation includes a positive feedback between the anomalous AMOC and surface wind stress anomalies in mid-latitudes and a negative feedback between the anomalous STC and AMOC. A strong AMOC is associated with warm sea surface temperature anomaly (SSTA) centered near 45°N, which generates an anticyclonic easterly surface wind anomaly. This anticyclonic wind anomaly enhances the regional downwelling and reinforces the anomalous AMOC. In the mean time, a wind-evaporation-SST (WES) feedback extends the warm SSTA to the tropics and induces a cyclonic wind stress anomaly there, which drives a tropical upwelling and weakens the STC north of the equator. The STC anomaly, in turn, drives a cold upper ocean heat content anomaly (HCA) in the northern tropical Atlantic and weakens the meridional heat transport from the tropics to the mid-latitude through an anomalous southward western boundary current. The anomalous STC transports cold HCA from the subtropics to the mid-latitudes, weakening the mid-latitude deep overturning.

[1]  Zhengyu Liu A simple model of the mass exchange between the subtropical and tropical ocean , 1994 .

[2]  W. Large,et al.  Oceanic vertical mixing: a review and a model with a nonlocal boundary layer parameterization , 1994 .

[3]  B. Dong,et al.  Mechanism of interdecadal thermohaline circulation variability in a coupled ocean : Atmosphere GCM , 2005 .

[4]  Barry A. Klinger,et al.  Decadal Response of Global Circulation to Southern Ocean Zonal Wind Stress Perturbation , 2009 .

[5]  L. Frankcombe,et al.  North atlantic multidecadal climate variability: An investigation of dominant time scales and processes , 2010 .

[6]  Y. Kushnir,et al.  Interdecadal Variations in North Atlantic Sea Surface Temperature and Associated Atmospheric Conditions , 1994 .

[7]  T. Palmer,et al.  Sahel rainfall and worldwide sea temperatures, 1901–85 , 1986, Nature.

[8]  L. Sime,et al.  A Decomposition of the Atlantic Meridional Overturning , 2006 .

[9]  Syukuro Manabe,et al.  Two Stable Equilibria of a Coupled Ocean-Atmosphere Model , 1988 .

[10]  J. Hwang,et al.  Local advective mechanism for interdecadal variability in circulations driven by constant surface heat fluxes in idealized basins , 2009 .

[11]  Carl Wunsch,et al.  Improved estimates of global ocean circulation, heat transport and mixing from hydrographic data , 2000, Nature.

[12]  D. Marshall,et al.  A Theory for the Surface Atlantic Response to Thermohaline Variability , 2002 .

[13]  Michael Ghil,et al.  ADVANCED SPECTRAL METHODS FOR CLIMATIC TIME SERIES , 2002 .

[14]  G. Johnson,et al.  Shallow Overturning Circulations of the Tropical‐Subtropical Oceans , 2013 .

[15]  C. Bitz,et al.  Influence of high latitude ice cover on the marine Intertropical Convergence Zone , 2005 .

[16]  Norden E. Huang,et al.  A review on Hilbert‐Huang transform: Method and its applications to geophysical studies , 2008 .

[17]  Syukuro Manabe,et al.  Interdecadal Variations of the Thermohaline Circulation in a Coupled Ocean-Atmosphere Model , 1993 .

[18]  Max J. Suarez,et al.  Vacillations in a Coupled Ocean–Atmosphere Model , 1988 .

[19]  S. Xie A Dynamic Ocean–Atmosphere Model of the Tropical Atlantic Decadal Variability , 1999 .

[20]  J. Marshall,et al.  A Study of the Interaction of the North Atlantic Oscillation with Ocean Circulation , 2001 .

[21]  A. Fedorov,et al.  The Leading, Interdecadal Eigenmode of the Atlantic Meridional Overturning Circulation in a Realistic Ocean Model , 2013 .

[22]  Arun Kumar,et al.  Connection of stratospheric QBO with global atmospheric general circulation and tropical SST. Part I: methodology and composite life cycle , 2011, Climate Dynamics.

[23]  J. Betancourt,et al.  A tree‐ring based reconstruction of the Atlantic Multidecadal Oscillation since 1567 A.D. , 2004 .

[24]  Dai Lian-rong The study of Ξ~*-Ω interaction , 2009 .

[25]  T. Delworth,et al.  Decadal to Centennial Variability of the Atlantic from Observations and Models , 2013 .

[26]  M. Latif,et al.  On Multidecadal and Quasi-Decadal North Atlantic Variability , 2008 .

[27]  Paul E. Robbins,et al.  Data-Based Meridional Overturning Streamfunctions for the Global Ocean , 2003 .

[28]  M. Ghil,et al.  Trends, interdecadal and interannual oscillations in global sea-surface temperatures , 1998 .

[29]  Matthew D. Collins,et al.  A review of predictability studies of Atlantic sector climate on decadal time scales , 2006 .

[30]  P. Chang,et al.  A decadal climate variation in the tropical Atlantic Ocean from thermodynamic air-sea interactions , 1997, Nature.

[31]  R. Lindzen,et al.  On the role of sea surface temperature gradients in forcing low-level winds and convergence in the tropics , 1987 .

[32]  William E. Johns,et al.  Continuous, Array-Based Estimates of Atlantic Ocean Heat Transport at 26.5°N , 2011 .

[33]  Arun Kumar,et al.  AMOC variations in 1979–2008 simulated by NCEP operational ocean data assimilation system , 2012, Climate Dynamics.

[34]  H. Bryden,et al.  Ocean heat transport , 2001 .

[35]  M. Latif,et al.  Arctic-North Atlantic Interactions and Multidecadal Variability of the Meridional Overturning Circulation , 2005 .

[36]  M. Kanamitsu,et al.  NCEP–DOE AMIP-II Reanalysis (R-2) , 2002 .

[37]  Gabriel Rilling,et al.  On empirical mode decomposition and its algorithms , 2003 .

[38]  P. Lu,et al.  Interaction between the Subtropical and Equatorial Ocean Circulations: The Subtropical Cell , 1994 .

[39]  Richard A. Wood,et al.  Global Climatic Impacts of a Collapse of the Atlantic Thermohaline Circulation , 2002 .

[40]  G. Danabasoglu On Multidecadal Variability of the Atlantic Meridional Overturning Circulation in the Community Climate System Model Version 3 , 2008 .

[41]  Jeff Knight,et al.  A signature of persistent natural thermohaline circulation cycles in observed climate , 2005 .

[42]  Michael E. Mann,et al.  Observed and Simulated Multidecadal Variability in the Northern Hemisphere , 1999 .

[43]  A. Timmermann,et al.  Interannual to Decadal Predictability in a Coupled Ocean–Atmosphere General Circulation Model , 1999 .

[44]  C. Wen,et al.  Effect of Atlantic Meridional Overturning Circulation Changes on Tropical Atlantic Sea Surface Temperature Variability: A 2½-Layer Reduced-Gravity Ocean Model Study , 2010 .

[45]  Wim-Paul Breugem,et al.  Oceanic link between abrupt changes in the North Atlantic Ocean and the African monsoon , 2008 .

[46]  J. David Neelin,et al.  On the role of ocean‐atmosphere interaction in midlatitude interdecadal variability , 1998 .

[47]  Carsten Eden,et al.  Mechanism of Interannual to Decadal Variability of the North Atlantic Circulation , 2001 .

[48]  R. Stouffer,et al.  Assessing the role of North Atlantic freshwater forcing in millennial scale climate variability: a tropical Atlantic perspective , 2005 .

[49]  G. Plaut,et al.  Spells of Low-Frequency Oscillations and Weather Regimes in the Northern Hemisphere. , 1994 .

[50]  T. Delworth,et al.  Simulated Tropical Response to a Substantial Weakening of the Atlantic Thermohaline Circulation , 2005 .

[51]  Yan Xue,et al.  EVALUATION OF THE GLOBAL OCEAN DATA ASSIMILATION SYSTEM AT NCEP: THE PACIFIC OCEAN , 2003 .

[52]  K. Speer,et al.  Global Ocean Meridional Overturning , 2007 .

[53]  S. Häkkinen,et al.  Shifting surface currents in the northern North Atlantic Ocean , 2009 .

[54]  K. Speer,et al.  Large-Scale Vertical and Horizontal Circulation in the North Atlantic Ocean , 2003 .

[55]  J. Jungclaus,et al.  Interdecadal variability of the meridional overturning circulation as an ocean internal mode , 2008 .

[56]  Aixue Hu,et al.  Response of Thermohaline Circulation to Freshwater Forcing under Present-Day and LGM Conditions , 2008 .

[57]  A. Weaver,et al.  Interdecadal Variability of the Thermohaline Circulation in Box-Ocean Models Forced by Fixed Surface Fluxes , 1999 .

[58]  A. Weaver,et al.  On the variability of the thermohaline circulation in the GFDL coupled model , 1998 .

[59]  H. Dijkstra,et al.  Instability of the Thermohaline Ocean Circulation on Interdecadal Timescales , 2002 .

[60]  Andrew J. Weaver,et al.  Evidence for decadal variability in an ocean general circulation model: An advective mechanism 1 , 1991 .

[61]  W. Cheng,et al.  Fast teleconnections to the tropical Atlantic sector from Atlantic thermohaline adjustment , 2008 .

[62]  Hsien-Wang Ou A minimal model of the Atlantic Multidecadal Variability: its genesis and predictability , 2012, Climate Dynamics.

[63]  R. Greatbatch,et al.  Multidecadal Thermohaline Circulation Variability Driven by Atmospheric Surface Flux Forcing , 2000 .

[64]  M. Balmaseda,et al.  Historical reconstruction of the Atlantic Meridional Overturning Circulation from the ECMWF operational ocean reanalysis , 2007 .

[65]  P. Malanotte‐Rizzoli,et al.  Influence of the Meridional Overturning Circulation on Tropical-Subtropical Pathways , 2001 .

[66]  G. Vallis,et al.  On the Robustness of the Interdecadal Modes of the Thermohaline Circulation , 2001 .

[67]  A. Biastoch,et al.  Decadal variability of subpolar gyre transport and its reverberation in the North Atlantic overturning , 2006 .

[68]  S. Saha,et al.  The NCEP Climate Forecast System , 2006 .

[69]  Norden E. Huang,et al.  On the time-varying trend in global-mean surface temperature , 2011 .

[70]  Nii O. Attoh-Okine,et al.  The Empirical Mode Decomposition and the Hilbert-Huang Transform , 2008, EURASIP J. Adv. Signal Process..

[71]  M. Vellinga,et al.  Low-Latitude Freshwater Influence on Centennial Variability of the Atlantic Thermohaline Circulation , 2004 .

[72]  A. Timmermann,et al.  Northern hemispheric interdecadal variability : A coupled air-sea mode , 1998 .

[73]  Alberto M. Mestas-Nuñez,et al.  The Atlantic Multidecadal Oscillation and its relation to rainfall and river flows in the continental U.S. , 2001 .

[74]  M. Baringer,et al.  Ocean Heat Transport , 2013 .

[75]  N. Huang,et al.  The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis , 1998, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[76]  R A Kerr,et al.  A North Atlantic Climate Pacemaker for the Centuries , 2000, Science.

[77]  L. Frankcombe,et al.  Coherent multidecadal variability in North Atlantic sea level , 2009 .

[78]  R. Stouffer,et al.  Response of the ITCZ to Northern Hemisphere cooling , 2006 .

[79]  Rong‐Hua Zhang Anticorrelated multidecadal variations between surface and subsurface tropical North Atlantic , 2007 .

[80]  R. Saravanan,et al.  Free and Forced Variability of the Tropical Atlantic Ocean: Role of the Wind-Evaporation-Sea Surface Temperature Feedback , 2010 .

[81]  Connection of the stratospheric QBO with global atmospheric general circulation and tropical SST. Part II: interdecadal variations , 2011, Climate Dynamics.

[82]  Andrei P. Sokolov,et al.  Investigating the Causes of the Response of the Thermohaline Circulation to Past and Future Climate Changes , 2006 .

[83]  B. Dong,et al.  Adjustment of the coupled ocean–atmosphere system to a sudden change in the Thermohaline Circulation , 2002 .

[84]  Zeng‐Zhen Hu,et al.  Wavelet Analysis of Summer Rainfall over North China and India and SOI Using 1891-1992 Data , 1996 .

[85]  J. Marshall,et al.  Observations of atmosphere‐ocean coupling in the North Atlantic , 2001 .

[86]  A. Timmermann,et al.  ENSO suppression due to weakening of the North Atlantic thermohaline circulation , 2005 .

[87]  P. Gent,et al.  Isopycnal mixing in ocean circulation models , 1990 .

[88]  Norden E. Huang,et al.  Ensemble Empirical Mode Decomposition: a Noise-Assisted Data Analysis Method , 2009, Adv. Data Sci. Adapt. Anal..

[89]  Rowan Sutton,et al.  Climate Response to Basin-Scale Warming and Cooling of the North Atlantic Ocean , 2007 .

[90]  M. Latif,et al.  The Impact of North Atlantic–Arctic Multidecadal Variability on Northern Hemisphere Surface Air Temperature , 2010 .

[91]  Max J. Suarez,et al.  A Delayed Action Oscillator for ENSO , 1988 .

[92]  Wei Cheng,et al.  Multi-decadal thermohaline variability in an ocean–atmosphere general circulation model , 2004 .