Capon algorithm mean-squared error threshold SNR prediction and probability of resolution

Below a specific threshold signal-to-noise ratio (SNR), the mean-squared error (MSE) performance of signal parameter estimates derived from the Capon algorithm degrades swiftly. Prediction of this threshold SNR point is of practical significance for robust system design and analysis. The exact pairwise error probabilities for the Capon (and Bartlett) algorithm, derived herein, are given by simple finite sums involving no numerical integration, include finite sample effects, and hold for an arbitrary colored data covariance. Via an adaptation of an interval error based method, these error probabilities, along with the local error MSE predictions of Vaidyanathan and Buckley, facilitate accurate prediction of the Capon threshold region MSE performance for an arbitrary number of well separated sources, circumventing the need for numerous Monte Carlo simulations. A large sample closed-form approximation for the Capon threshold SNR is provided for uniform linear arrays. A new, exact, two-point measure of the probability of resolution for the Capon algorithm, that includes the deleterious effects of signal model mismatch, is a serendipitous byproduct of this analysis that predicts the SNRs required for closely spaced sources to be mutually resolvable by the Capon algorithm. Last, a general strategy is provided for obtaining accurate MSE predictions that account for signal model mismatch.

[1]  Robert Boorstyn,et al.  Single tone parameter estimation from discrete-time observations , 1974, IEEE Trans. Inf. Theory.

[2]  Philippe Forster,et al.  Nonasymptotic statistical performance of beamforming for deterministic signals , 2004, IEEE Signal Processing Letters.

[3]  T. Marzetta A new interpretation of Capon's maximum likelihood method of frequency-wavenumber spectral estimation , 1983 .

[4]  Wen Xu,et al.  Quantitive ambiguity analysis for matched-field source localization under spatially-correlated noise field , 2003, Oceans 2003. Celebrating the Past ... Teaming Toward the Future (IEEE Cat. No.03CH37492).

[5]  Allan Steinhardt,et al.  Thresholds in frequency estimation , 1985, ICASSP '85. IEEE International Conference on Acoustics, Speech, and Signal Processing.

[6]  Keith Q. T. Zhang Probability of resolution of the MUSIC algorithm , 1995, IEEE Trans. Signal Process..

[7]  Giorgio Taricco,et al.  Expurgating the union bound to error probability: a generalization of the Verdu-Shields theorem , 1997, Proceedings of IEEE International Symposium on Information Theory.

[8]  Christ D. Richmond,et al.  Mean-squared error and threshold SNR prediction of maximum-likelihood signal parameter estimation with estimated colored noise covariances , 2006, IEEE Transactions on Information Theory.

[9]  A. Weiss,et al.  Fundamental limitations in passive time delay estimation--Part I: Narrow-band systems , 1983 .

[10]  Ван Трис Гарри Теория обнаружения, оценок и модуляции. Обработка сигналов в радио- и гидролокации и прием случайных гауссовых сигналов на фоне помех. (Detection, Estimation, and Modulation Theory. P.III. Radar-Sonar Signal Processing and Gaussian Signals in Noise) , 1977 .

[11]  Philippe Forster,et al.  Nonasymptotic performance analysis of beamforming with stochastic signals , 2004, IEEE Signal Processing Letters.

[12]  Liu Guosui,et al.  The effect of channel mismatch on the spatial spectrum and resolution ability of MUSIC algorithm , 1996, Proceedings of International Radar Conference.

[13]  A. W. Rihaczek Principles of high-resolution radar , 1969 .

[14]  Kevin Buckley,et al.  Performance analysis of the enhanced minimum variance spatial spectrum estimator , 1998, IEEE Trans. Signal Process..

[15]  Sergio Verdú,et al.  Maximum likelihood sequence detection for intersymbol interference channels: A new upper bound on error probability , 1987, IEEE Trans. Inf. Theory.

[16]  Arye Nehorai,et al.  Acoustic vector-sensor beamforming and Capon direction estimation , 1995, 1995 International Conference on Acoustics, Speech, and Signal Processing.

[17]  Torsten Söderström,et al.  Study of Capon method for array signal processing , 1995 .

[18]  Jian Li,et al.  An adaptive filtering approach to spectral estimation and SAR imaging , 1996, IEEE Trans. Signal Process..

[19]  Erik G. Larsson,et al.  HIGH-RESOLUTION NONPARAMETRIC SPECTRAL ANALYSIS: THEORY AND APPLICATIONS , 2003 .

[20]  F. Athley Threshold region performance of deterministic maximum likelihood DOA estimation of multiple sources , 2002, Conference Record of the Thirty-Sixth Asilomar Conference on Signals, Systems and Computers, 2002..

[21]  Anthony J. Weiss,et al.  The resolution threshold of a direction-finding algorithm for diversely polarized arrays , 1994, IEEE Trans. Signal Process..

[22]  N. R. Goodman,et al.  Probability distributions for estimators of the frequency-wavenumber spectrum , 1970 .

[23]  Harry L. Van Trees,et al.  Detection, Estimation, and Modulation Theory: Radar-Sonar Signal Processing and Gaussian Signals in Noise , 1992 .

[24]  Kevin Buckley,et al.  Performance analysis of the MVDR spatial spectrum estimator , 1995, IEEE Trans. Signal Process..

[25]  Petre Stoica,et al.  On the resolution performance of spectral analysis , 1995, Signal Process..

[26]  B. Hofmann-Wellenhof,et al.  Introduction to spectral analysis , 1986 .

[27]  Philip M. Woodward,et al.  Probability and Information Theory with Applications to Radar , 1954 .

[28]  I. Reed,et al.  Rapid Convergence Rate in Adaptive Arrays , 1974, IEEE Transactions on Aerospace and Electronic Systems.

[29]  Nigel Lee,et al.  Threshold Region Performance Prediction for Adaptive Matched Field Processing Localization , 2004 .

[30]  J. Capon High-resolution frequency-wavenumber spectrum analysis , 1969 .

[31]  W. Burnside,et al.  Theory of equations , 1886 .

[32]  A. Lee Swindlehurst,et al.  Analysis of the combined effects of finite samples and model errors on array processing performance , 1994, IEEE Trans. Signal Process..

[33]  R. Muirhead Aspects of Multivariate Statistical Theory , 1982, Wiley Series in Probability and Statistics.

[34]  Christ D. Richmond,et al.  Performance of a class of adaptive detection algorithms in nonhomogeneous environments , 2000, IEEE Trans. Signal Process..

[35]  Wen Xu,et al.  A bound on mean-square estimation error with background parameter mismatch , 2004, IEEE Transactions on Information Theory.

[36]  John K. Thomas,et al.  The probability of a subspace swap in the SVD , 1995, IEEE Trans. Signal Process..

[37]  Christ D. Richmond,et al.  Derived PDF of maximum likelihood signal estimator which employs an estimated noise covariance , 1996, IEEE Trans. Signal Process..

[38]  Harry L. Van Trees,et al.  Detection, Estimation, and Modulation Theory, Part I , 1968 .

[39]  Don Herbison-Evans,et al.  Solving Quartics and Cubics for Graphics , 1995 .

[40]  Wen Xu,et al.  Quantitative ambiguity analysis for matched-field source localization , 2002, Conference Record of the Thirty-Sixth Asilomar Conference on Signals, Systems and Computers, 2002..

[41]  H. Cox Resolving power and sensitivity to mismatch of optimum array processors , 1973 .

[42]  Christ D. Richmond,et al.  Performance of the adaptive sidelobe blanker detection algorithm in homogeneous environments , 2000, IEEE Trans. Signal Process..

[43]  Fredrik Athley,et al.  Space-Time Parameter Estimation in Radar Array Processing , 2003 .

[44]  Wen Xu,et al.  Performance Bounds on Matched-Field Methods for Source Localization and Estimation of Ocean Environmental Parameters , 2001 .

[45]  Andreas Jakobsson,et al.  Computationally efficient two-dimensional Capon spectrum analysis , 2000, IEEE Trans. Signal Process..