Mitochondrial hyperpolarization in iPSC-derived neurons from patients of FTDP-17 with 10+16 MAPT mutation leads to oxidative stress and neurodegeneration

[1]  A. Abramov,et al.  Functional role of mitochondrial reactive oxygen species in physiology. , 2016, Free radical biology & medicine.

[2]  L. Petrucelli,et al.  Poly(GR) in C9ORF72-Related ALS/FTD Compromises Mitochondrial Function and Increases Oxidative Stress and DNA Damage in iPSC-Derived Motor Neurons , 2016, Neuron.

[3]  J. Hardy,et al.  Review: Induced pluripotent stem cell models of frontotemporal dementia , 2016, Neuropathology and applied neurobiology.

[4]  K. Suk,et al.  Metabolic reprogramming by the pyruvate dehydrogenase kinase–lactic acid axis: Linking metabolism and diverse neuropathophysiologies , 2016, Neuroscience & Biobehavioral Reviews.

[5]  A. Dinkova-Kostova,et al.  Nrf2 activation in the treatment of neurodegenerative diseases: a focus on its role in mitochondrial bioenergetics and function , 2016, Biological chemistry.

[6]  Anil Kumar,et al.  A review on mitochondrial restorative mechanism of antioxidants in Alzheimer’s disease and other neurological conditions , 2015, Front. Pharmacol..

[7]  G. Funk,et al.  Functional Oxygen Sensitivity of Astrocytes , 2015, The Journal of Neuroscience.

[8]  M. Araúzo-Bravo,et al.  Distinct Neurodegenerative Changes in an Induced Pluripotent Stem Cell Model of Frontotemporal Dementia Linked to Mutant TAU Protein , 2015, Stem cell reports.

[9]  Colin J. Mahoney,et al.  Developmental regulation of tau splicing is disrupted in stem cell-derived neurons from frontotemporal dementia patients with the 10 + 16 splice-site mutation in MAPT , 2015, Human molecular genetics.

[10]  S. Bell,et al.  Calorie restriction does not restore brain mitochondrial function in P301L tau mice, but it does decrease mitochondrial F0F1-ATPase activity , 2015, Molecular and Cellular Neuroscience.

[11]  Keith A. Johnson,et al.  Invited review: Frontotemporal dementia caused by microtubule-associated protein tau gene (MAPT) mutations: a chameleon for neuropathology and neuroimaging , 2015, Neuropathology and applied neurobiology.

[12]  A. Stefani,et al.  CSF lactate levels, τ proteins, cognitive decline: a dynamic relationship in Alzheimer's disease , 2014, Journal of Neurology, Neurosurgery & Psychiatry.

[13]  J. Smeitink,et al.  Mitochondrial hyperpolarization during chronic complex I inhibition is sustained by low activity of complex II, III, IV and V. , 2014, Biochimica et biophysica acta.

[14]  E. Taylor,et al.  Regulation of pyruvate metabolism and human disease , 2013, Cellular and Molecular Life Sciences.

[15]  Michel Goedert,et al.  Tau pathology and neurodegeneration , 2013, The Lancet Neurology.

[16]  Tim Rappon,et al.  Overexpression of Pyruvate Dehydrogenase Kinase 1 and Lactate Dehydrogenase A in Nerve Cells Confers Resistance to Amyloid β and Other Toxins by Decreasing Mitochondrial Respiration and Reactive Oxygen Species Production* , 2012, The Journal of Biological Chemistry.

[17]  A. Reichert,et al.  A New Link to Mitochondrial Impairment in Tauopathies , 2012, Molecular Neurobiology.

[18]  S. Gandhi,et al.  Mechanism of Oxidative Stress in Neurodegeneration , 2012, Oxidative medicine and cellular longevity.

[19]  M. Ankarcrona,et al.  Strategic role for mitochondria in Alzheimer's disease and cancer. , 2012, Antioxidants & redox signaling.

[20]  Peter Kirwan,et al.  Human cerebral cortex development from pluripotent stem cells to functional excitatory synapses , 2012, Nature Neuroscience.

[21]  M. Goedert,et al.  Pathogenesis of the Tauopathies , 2011, Journal of Molecular Neuroscience.

[22]  M. Portero-Otín,et al.  Mitochondrial Dysfunction and Oxidative and Endoplasmic Reticulum Stress in Argyrophilic Grain Disease , 2011, Journal of neuropathology and experimental neurology.

[23]  J. Lemasters,et al.  Free tubulin modulates mitochondrial membrane potential in cancer cells. , 2010, Cancer research.

[24]  John X. Morris,et al.  Spatial correlation between brain aerobic glycolysis and amyloid-β (Aβ) deposition , 2010, Proceedings of the National Academy of Sciences.

[25]  D. Turnbull,et al.  Mechanism of neurodegeneration of neurons with mitochondrial DNA mutations , 2010, Brain : a journal of neurology.

[26]  Xiaomin Song,et al.  Amyloid-β and tau synergistically impair the oxidative phosphorylation system in triple transgenic Alzheimer's disease mice , 2009, Proceedings of the National Academy of Sciences.

[27]  Takeharu Nagai,et al.  Visualization of ATP levels inside single living cells with fluorescence resonance energy transfer-based genetically encoded indicators , 2009, Proceedings of the National Academy of Sciences.

[28]  R. Hamilton,et al.  Mitochondrial bioenergetic deficit precedes Alzheimer's pathology in female mouse model of Alzheimer's disease , 2009, Proceedings of the National Academy of Sciences.

[29]  P. Dolan,et al.  Caspase-cleaved Tau Expression Induces Mitochondrial Dysfunction in Immortalized Cortical Neurons , 2009, The Journal of Biological Chemistry.

[30]  C. Schade-Brittinger,et al.  In vivo Evidence for Cerebral Depletion in High-Energy Phosphates in Progressive Supranuclear Palsy , 2009, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[31]  D. Sackett,et al.  Tubulin binding blocks mitochondrial voltage-dependent anion channel and regulates respiration , 2008, Proceedings of the National Academy of Sciences.

[32]  Fei Liu,et al.  Molecular Neurodegeneration BioMed Central Review Tau exon 10 alternative splicing and tauopathies , 2008 .

[33]  J. Trojanowski,et al.  Tau-mediated neurodegeneration in Alzheimer's disease and related disorders , 2007, Nature Reviews Neuroscience.

[34]  J. Lemasters,et al.  Voltage-dependent anion channel (VDAC) as mitochondrial governator--thinking outside the box. , 2006, Biochimica et biophysica acta.

[35]  R. Ravid,et al.  Proteomic and Functional Analyses Reveal a Mitochondrial Dysfunction in P301L Tau Transgenic Mice* , 2005, Journal of Biological Chemistry.

[36]  P. Maher,et al.  The Regulation of Glucose Metabolism by HIF-1 Mediates a Neuroprotective Response to Amyloid Beta Peptide , 2003, Neuron.

[37]  Robin A. J. Smith,et al.  Selective Targeting of a Redox-active Ubiquinone to Mitochondria within Cells , 2001, The Journal of Biological Chemistry.

[38]  K. Imahori,et al.  Regulation of mitochondrial pyruvate dehydrogenase activity by tau protein kinase I/glycogen synthase kinase 3beta in brain. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[39]  M. Goedert,et al.  Expression of separate isoforms of human tau protein: correlation with the tau pattern in brain and effects on tubulin polymerization. , 1990, The EMBO journal.

[40]  R. A. Crowther,et al.  Multiple isoforms of human microtubule-associated protein tau: sequences and localization in neurofibrillary tangles of Alzheimer's disease , 1989, Neuron.

[41]  Kenneth S. Kosik,et al.  Developmentally regulated expression of specific tau sequences , 1989, Neuron.

[42]  S. Sorbi,et al.  Decreased pyruvate dehydrogenase complex activity in Huntington and Alzheimer brain , 1983, Annals of neurology.

[43]  M. Kirschner,et al.  A protein factor essential for microtubule assembly. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[44]  A. Abramov,et al.  Measurement of mitochondrial NADH and FAD autofluorescence in live cells. , 2015, Methods in molecular biology.

[45]  A. Cattaneo,et al.  Characterization of mitochondrial dysfunction in the 7PA2 cell model of Alzheimer's disease. , 2013, Journal of Alzheimer's disease : JAD.

[46]  J. Błasiak,et al.  Redox Biology , 2018 .