Dynamic mode shaping for fluid flow control: New strategies for transient growth suppression

Sub-critical transition to turbulence is often attributed to transient energy growth that arises from non-normality of the linearized Navier-Stokes operator. Here, we introduce a new dynamic mode shaping perspective for transient growth suppression that focuses on using feedback control to shape the spectral properties of the linearized flow. Specifically, we propose a dynamic mode matching strategy that can be used to reduce non-normality and transient growth. We also propose a dynamic mode orthogonalization strategy that can be used to eliminate non-normality and fully suppress transient growth. Further, we formulate dynamic mode shaping strategies that aim to handle some of the practical challenges inherent to fluid flow control applications, namely high-dimensionality, nonlinearity, and uncertainty. Dynamic mode shaping methods are demonstrated on a number of simple illustrative examples that show the utility of this new perspective for transient growth suppression. The methods and perspectives introduced here will serve as a foundation for realizing effective flow control in the future.

[1]  Kathryn M. Butler,et al.  Optimal perturbations and streak spacing in wall‐bounded turbulent shear flow , 1993 .

[2]  M. Jovanović,et al.  Turbulence suppression in channel flows by small amplitude transverse wall oscillations , 2006, 2006 American Control Conference.

[3]  W. Steeb,et al.  Nonlinear dynamical systems and Carleman linearization , 1991 .

[4]  L. Elsner,et al.  Normal matrices: an update , 1998 .

[5]  Steven L. Brunton,et al.  Dynamic Mode Decomposition with Control , 2014, SIAM J. Appl. Dyn. Syst..

[6]  Clarence W. Rowley,et al.  A Data–Driven Approximation of the Koopman Operator: Extending Dynamic Mode Decomposition , 2014, Journal of Nonlinear Science.

[7]  I. Mezić,et al.  Spectral analysis of nonlinear flows , 2009, Journal of Fluid Mechanics.

[8]  P. Schmid,et al.  Dynamic mode decomposition of numerical and experimental data , 2008, Journal of Fluid Mechanics.

[9]  D. Henningson,et al.  Spatial optimal growth in three-dimensional boundary layers , 2010, Journal of Fluid Mechanics.

[10]  Steven L. Brunton,et al.  On dynamic mode decomposition: Theory and applications , 2013, 1312.0041.

[11]  S. Jonathan Chapman,et al.  Subcritical transition in channel flows , 2002, Journal of Fluid Mechanics.

[12]  Clarence W. Rowley,et al.  Dynamic mode decomposition for large and streaming datasets , 2014, 1406.7187.

[13]  Sanjay S. Joshi,et al.  A systems theory approach to the feedback stabilization of infinitesimal and finite-amplitude disturbances in plane Poiseuille flow , 1997, Journal of Fluid Mechanics.

[14]  I. Mezić,et al.  Analysis of Fluid Flows via Spectral Properties of the Koopman Operator , 2013 .

[15]  Louis N. Cattafesta,et al.  Active Control of Flow-Induced Cavity Resonance , 1997 .

[16]  Bassam Bamieh,et al.  Componentwise energy amplification in channel flows , 2005, Journal of Fluid Mechanics.

[17]  P. Ioannou,et al.  Stochastic forcing of the linearized Navier–Stokes equations , 1993 .

[18]  Kathryn M. Butler,et al.  Three‐dimensional optimal perturbations in viscous shear flow , 1992 .

[19]  P. Luchini Reynolds-number-independent instability of the boundary layer over a flat surface: optimal perturbations , 2000, Journal of Fluid Mechanics.

[20]  Thomas Bewley,et al.  Optimal and robust control and estimation of linear paths to transition , 1998, Journal of Fluid Mechanics.

[21]  C. Rowley,et al.  Modeling of transitional channel flow using balanced proper orthogonal decomposition , 2007, 0707.4112.

[22]  George Papadakis,et al.  Linear quadratic control of plane Poiseuille flow–the transient behaviour , 2007, Int. J. Control.

[23]  Y S J O S H I,et al.  A systems theory approach to the feedback stabilization of infinitesimal and finite-amplitude disturbances in plane Poiseuille flow , 1997 .

[24]  Clarence W. Rowley,et al.  Improving separation control with noise-robust variants of dynamic mode decomposition , 2016 .

[25]  Javier Jiménez,et al.  How linear is wall-bounded turbulence? , 2013 .

[26]  E.Y. Shapiro,et al.  Eigenstructure Assignment for Linear Systems , 1983, IEEE Transactions on Aerospace and Electronic Systems.

[27]  I. Mezić Spectral Properties of Dynamical Systems, Model Reduction and Decompositions , 2005 .

[28]  Paolo Luchini,et al.  Reynolds-number-independent instability of the boundary layer over a flat surface , 1996, Journal of Fluid Mechanics.

[29]  S. C. Reddy,et al.  Energy growth in viscous channel flows , 1993, Journal of Fluid Mechanics.

[30]  Thomas Bewley,et al.  A Linear Systems Approach to Flow Control , 2007 .

[31]  Steven L. Brunton,et al.  Koopman Invariant Subspaces and Finite Linear Representations of Nonlinear Dynamical Systems for Control , 2015, PloS one.

[32]  Clarence W. Rowley,et al.  De-biasing the dynamic mode decomposition for applied Koopman spectral analysis of noisy datasets , 2015, Theoretical and Computational Fluid Dynamics.

[33]  D. Henningson,et al.  Optimal disturbances and bypass transition in boundary layers , 1999 .

[34]  Clarence W. Rowley,et al.  Characterizing and correcting for the effect of sensor noise in the dynamic mode decomposition , 2014, Experiments in Fluids.

[35]  P. Schmid,et al.  Stability and Transition in Shear Flows. By P. J. SCHMID & D. S. HENNINGSON. Springer, 2001. 556 pp. ISBN 0-387-98985-4. £ 59.50 or $79.95 , 2000, Journal of Fluid Mechanics.

[36]  Eric C. Kerrigan,et al.  Modelling for robust feedback control of fluid flows , 2015, Journal of Fluid Mechanics.

[37]  Clarence W. Rowley,et al.  Extending Data-Driven Koopman Analysis to Actuated Systems , 2016 .

[38]  Christina Freytag,et al.  Stability And Transition In Shear Flows , 2016 .

[39]  Anne E. Trefethen,et al.  Hydrodynamic Stability Without Eigenvalues , 1993, Science.

[40]  Dan S. Henningson,et al.  On the role of linear mechanisms in transition to turbulence , 1994 .

[41]  Lennart S. Hultgren,et al.  Algebraic growth of disturbances in a laminar boundary layer , 1981 .

[42]  Junwoo Lim,et al.  A linear process in wall-bounded turbulent shear flows , 2000 .

[43]  B. Moore On the flexibility offered by state feedback in multivariable systems beyond closed loop eigenvalue assignment , 1975 .

[44]  Claire J. Tomlin,et al.  Nonlinear systems: analysis, stability, and control, Shankar Sastry, Springer‐Verlag, New York, NY, 1999, 667 pages. ISBN 0‐387‐98513‐1. , 2001 .

[45]  Dan S. Henningson,et al.  Relaminarization of Reτ=100 turbulence using gain scheduling and linear state-feedback control , 2003 .

[46]  James F. Whidborne,et al.  On the Minimization of Maximum Transient Energy Growth , 2007, IEEE Transactions on Automatic Control.