Surface modification on MoO2+x/Mo(110) induced by a local electric potential

[1]  V. A. Tulin,et al.  Static and dynamic effects of the resistive switchings in heterocontacts based on superconductive Nd 2 − x Ce x CuO 4 − y films , 2018 .

[2]  I. Shvets,et al.  Nanoclusters and nanolines: the effect of molybdenum oxide substrate stoichiometry on iron self-assembly , 2017, Nanotechnology.

[3]  I. Shvets,et al.  Rotation dynamics of C60 molecules in a monolayer fullerene film on the WO2/W(110) surface near the rotational phase transition , 2015 .

[4]  M. G. Norton,et al.  Catalytic partial oxidation of a biodiesel surrogate over molybdenum dioxide , 2015 .

[5]  Gerhard Klimeck,et al.  Coherent control of a single ²⁹Si nuclear spin qubit. , 2014, Physical review letters.

[6]  Brendan Bulfin,et al.  Writing with atoms: Oxygen adatoms on the MoO2/Mo(110) surface , 2013, Nano Research.

[7]  E. Ma,et al.  Nanostructured high-strength molybdenum alloys with unprecedented tensile ductility. , 2013, Nature materials.

[8]  I. Shvets,et al.  Correlation between charge-transfer and rotation of C60 on WO2/W(110). , 2013, Nanoscale.

[9]  I. Shvets,et al.  High resolution STM imaging with oriented single crystalline tips , 2013 .

[10]  M. Flatté,et al.  Single dopants in semiconductors. , 2011, Nature materials.

[11]  I. Shvets,et al.  Selecting the tip electron orbital for scanning tunneling microscopy imaging with sub-ångström lateral resolution , 2010 .

[12]  M. G. Norton,et al.  Nanoparticle molybdenum dioxide: A highly active catalyst for partial oxidation of aviation fuels , 2010 .

[13]  Richard Berndt,et al.  Pushing and pulling a Sn ion through an adsorbed phthalocyanine molecule. , 2009, Journal of the American Chemical Society.

[14]  J. Yang,et al.  Memristive switching mechanism for metal/oxide/metal nanodevices. , 2008, Nature nanotechnology.

[15]  A. Sawa Resistive switching in transition metal oxides , 2008 .

[16]  I. Shvets,et al.  Studies of the periodic faceting of epitaxial molybdenum oxide grown on Mo(110) , 2008 .

[17]  M. Vannice,et al.  An analysis of the Mars–van Krevelen rate expression , 2007 .

[18]  I. Shvets,et al.  Epitaxial molybdenum oxide grown on MO (110): LEED, STM, and density functional theory calculations , 2007 .

[19]  S. Hecht,et al.  Electric field-induced isomerization of azobenzene by STM. , 2006, Journal of the American Chemical Society.

[20]  N. Wu,et al.  Evidence for an oxygen diffusion model for the electric pulse induced resistance change effect in transition-metal oxides. , 2006, Physical review letters.

[21]  Søren Andresen,et al.  Controlled shallow single ion implantation in silicon using an active substrate for sub-20 keV ions , 2005 .

[22]  G. Nazin,et al.  Mechanisms of reversible conformational transitions in a single molecule. , 2004, Physical review letters.

[23]  V. Kharton,et al.  Transport properties of solid oxide electrolyte ceramics: a brief review , 2004 .

[24]  Saw-Wai Hla,et al.  STM control of chemical reaction: single-molecule synthesis. , 2003, Annual review of physical chemistry.

[25]  Jooyoung Kim,et al.  Local Atomic Diffusion on Au(111) Surface Induced by Au Tip , 2003 .

[26]  A. Jablonski,et al.  Surface studies and catalytic properties of the bifunctional bulk MoO2 system , 2002 .

[27]  R. Penner,et al.  Synthesis of Molybdenum Nanowires with Millimeter-Scale Lengths Using Electrochemical Step Edge Decoration , 2002 .

[28]  S. R. Schofield,et al.  Towards the fabrication of phosphorus qubits for a silicon quantum computer , 2001, cond-mat/0104569.

[29]  F. Tietz,et al.  Correlation between thermal expansion and oxide ion transport in mixed conducting perovskite-type oxides for SOFC cathodes , 2000 .

[30]  Meyer,et al.  Inducing all steps of a chemical reaction with the scanning tunneling microscope tip: towards single molecule engineering , 2000, Physical review letters.

[31]  P. Saalfrank Manipulation of adsorbates with electric fields , 2000 .

[32]  D. Malterre,et al.  STM-TIP induced surface diffusion of copper on copper (100) , 2000 .

[33]  F. Domka,et al.  Water–gas shift reaction over sulfided molybdenum catalysts: I. Alumina, titania and zirconia-supported catalysts , 2000 .

[34]  W. Ho,et al.  Atomically resolved adsorption and scanning tunneling microscope induced desorption on a semiconductor: NO on Si(111)-(7×7) , 1999 .

[35]  A. Katrib,et al.  Molybdenum based catalysts. I. MoO2 as the active species in the reforming of hydrocarbons , 1996 .

[36]  S. Oyama,et al.  Catalytic hydrotreating by molybdenum carbide and nitride: unsupported Mo2N and Mo2CAl2O3 , 1996 .

[37]  D. Eigler,et al.  Positioning single atoms with a scanning tunnelling microscope , 1990, Nature.

[38]  S. Das,et al.  High performance aerospace alloys via rapid solidification processing , 1988 .

[39]  Nordlander,et al.  Calculation of the barrier for oxygen incorporation into metal and metal-oxide surfaces. , 1987, Physical review. B, Condensed matter.

[40]  Nordlander,et al.  Barrier to oxygen penetration on metal and oxide surfaces. , 1987, Physical review. B, Condensed matter.

[41]  G. Kellogg Measurement of activation energies for field evaporation of tungsten ions as a function of electric field , 1984 .

[42]  A. Balandin,et al.  Some catalytic properties of molybdenum trioxide and dioxide , 1959 .

[43]  M. Bowker,et al.  Contrasting the Behaviour of MoO3 and MoO2 for the Oxidation of Methanol , 2007 .

[44]  J. Hörandel,et al.  COSMIC RAYS FROM THE KNEE TO THE SECOND , 2007 .

[45]  A. Zotov,et al.  Surface Analysis I. Diffraction Methods , 2003 .

[46]  G. D. Parfitt,et al.  Surface Science , 1965, Nature.

[47]  H. Reisenauer Relative Effeciency of Seed-and-Soil-Applied Molybdenum Fertilizer 1 , 1963 .

[48]  N. Cabrera,et al.  Theory of the oxidation of metals , 1949 .