Cell culture systems for isolation of SARS-CoV-2 clinical isolates and generation of recombinant virus

[1]  A. Ensser,et al.  Spike and nsp6 are key determinants of SARS-CoV-2 Omicron BA.1 attenuation , 2023, Nature.

[2]  G. Reid,et al.  Sequencing during Times of Change: Evaluating SARS-CoV-2 Clinical Samples during the Transition from the Delta to Omicron Wave , 2022, Viruses.

[3]  A. Kaneda,et al.  Attenuated fusogenicity and pathogenicity of SARS-CoV-2 Omicron variant , 2022, Nature.

[4]  T. Ndung’u,et al.  Omicron extensively but incompletely escapes Pfizer BNT162b2 neutralization , 2021, Nature.

[5]  Kimberly J. Stemple,et al.  Propagation of SARS-CoV-2 in Calu-3 Cells to Eliminate Mutations in the Furin Cleavage Site of Spike , 2021, Viruses.

[6]  K. Überla,et al.  Cloning of a Passage-Free SARS-CoV-2 Genome and Mutagenesis Using Red Recombination , 2021, International journal of molecular sciences.

[7]  C. Uphoff,et al.  Identification of cell lines CL-14, CL-40 and CAL-51 as suitable models for SARS-CoV-2 infection studies , 2021, PloS one.

[8]  Jourdan K. Ewoldt,et al.  SARS-CoV-2 Disrupts Proximal Elements in the JAK-STAT Pathway , 2021, Journal of virology.

[9]  A. Pyke,et al.  A versatile reverse genetics platform for SARS-CoV-2 and other positive-strand RNA viruses , 2021, Nature Communications.

[10]  B. G. Hale Avoiding culture shock with the SARS-CoV-2 spike protein , 2021, eLife.

[11]  R. Neher,et al.  Novel SARS-CoV-2 variants: the pandemics within the pandemic , 2021, Clinical Microbiology and Infection.

[12]  M. Giacca,et al.  The furin cleavage site in the SARS-CoV-2 spike protein is required for transmission in ferrets , 2021, Nature Microbiology.

[13]  Gene W. Yeo,et al.  Emergence and rapid transmission of SARS-CoV-2 B.1.1.7 in the United States , 2021, Cell.

[14]  Y. Orba,et al.  MRC5 cells engineered to express ACE2 serve as a model system for the discovery of antivirals targeting SARS-CoV-2 , 2021, Scientific Reports.

[15]  D. Hayes,et al.  Systematic analysis of SARS-CoV-2 infection of an ACE2-negative human airway cell , 2021, bioRxiv.

[16]  S. Neil,et al.  The Polybasic Cleavage Site in SARS-CoV-2 Spike Modulates Viral Sensitivity to Type I Interferon and IFITM2 , 2021, Journal of Virology.

[17]  Vineet D. Menachery,et al.  Loss of furin cleavage site attenuates SARS-CoV-2 pathogenesis , 2021, Nature.

[18]  N. Wu,et al.  Human airway cells prevent SARS-CoV-2 multibasic cleavage site cell culture adaptation , 2021, bioRxiv.

[19]  B. La Scola,et al.  Culture of SARS-CoV-2 in a panel of laboratory cell lines, permissivity, and differences in growth profile , 2021, European journal of clinical microbiology & infectious diseases : official publication of the European Society of Clinical Microbiology.

[20]  Carl A. B. Pearson,et al.  Estimated transmissibility and impact of SARS-CoV-2 lineage B.1.1.7 in England , 2021, Science.

[21]  Lisa E. Gralinski,et al.  SARS-CoV-2 D614G variant exhibits efficient replication ex vivo and transmission in vivo , 2020, Science.

[22]  Vineet D. Menachery,et al.  Spike mutation D614G alters SARS-CoV-2 fitness , 2020, Nature.

[23]  A. Trkola,et al.  SARS-CoV-2 variants reveal features critical for replication in primary human cells , 2020, PLoS biology.

[24]  W. Kamitani,et al.  Establishment of a reverse genetics system for SARS-CoV-2 using circular polymerase extension reaction , 2020, bioRxiv.

[25]  D. Matthews,et al.  Characterisation of the transcriptome and proteome of SARS-CoV-2 reveals a cell passage induced in-frame deletion of the furin-like cleavage site from the spike glycoprotein , 2020, Genome Medicine.

[26]  F. Almazán,et al.  Rescue of SARS-CoV-2 from a single bacterial artificial chromosome , 2020, bioRxiv.

[27]  N. Loman,et al.  Identification of Common Deletions in the Spike Protein of Severe Acute Respiratory Syndrome Coronavirus 2 , 2020, Journal of Virology.

[28]  Natacha S. Ogando,et al.  SARS-coronavirus-2 replication in Vero E6 cells: replication kinetics, rapid adaptation and cytopathology , 2020, bioRxiv.

[29]  G. Herrler,et al.  SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor , 2020, Cell.

[30]  M. Müller,et al.  Rapid reconstruction of SARS-CoV-2 using a synthetic genomics platform , 2020, Nature.

[31]  E. Dong,et al.  An interactive web-based dashboard to track COVID-19 in real time , 2020, The Lancet Infectious Diseases.

[32]  Kai Zhao,et al.  Addendum: A pneumonia outbreak associated with a new coronavirus of probable bat origin , 2020, Nature.

[33]  Kai Zhao,et al.  A pneumonia outbreak associated with a new coronavirus of probable bat origin , 2020, Nature.

[34]  Victor M Corman,et al.  Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR , 2020, Euro surveillance : bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin.

[35]  K. To,et al.  Attenuated SARS-CoV-2 variants with deletions at the S1/S2 junction , 2020, Emerging microbes & infections.

[36]  G. Rosania,et al.  The Extracellular Microenvironment Explains Variations in Passive Drug Transport Across Different Airway Epithelial Cell Types , 2013, Pharmaceutical Research.

[37]  A. Osterhaus,et al.  Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. , 2012, The New England journal of medicine.

[38]  Christian Drosten,et al.  Identification of a novel coronavirus in patients with severe acute respiratory syndrome. , 2003, The New England journal of medicine.