Describing and simulating phytoplankton of a small and shallow reservoir using decision trees and rule-based models

[1]  G. Rollwagen‐Bollens,et al.  Nutrient Control of Phytoplankton Abundance and Biomass, and Microplankton Assemblage Structure in the Lower Columbia River (Vancouver, Washington, USA) , 2022, Water.

[2]  D. Solomatine,et al.  A Classification-Based Machine Learning Approach to the Prediction of Cyanobacterial Blooms in Chilgok Weir, South Korea , 2022, Water.

[3]  Fleurdeliz Maglangit,et al.  A benchmark survey of plankton, fish and benthic composition in Poblacion and Kadurong Reefs in Liloan, Cebu, Philippines , 2021, Biodiversity data journal.

[4]  J. Scott,et al.  Stoichiometric imbalances complicate prediction of phytoplankton biomass in U.S. lakes: Implications for nutrient criteria , 2021, Limnology and oceanography.

[5]  M. Honti,et al.  Stochastic simulation of phytoplankton biomass using eighteen years of daily data - predictability of phytoplankton growth in a large, shallow lake. , 2020, The Science of the total environment.

[6]  A. Imai,et al.  Primary production estimated for large lakes and reservoirs in the Mekong River Basin. , 2020, The Science of the total environment.

[7]  Eunji Lee,et al.  Prediction of Chlorophyll-a Concentrations in the Nakdong River Using Machine Learning Methods , 2020, Water.

[8]  J. C. Bortolini,et al.  Environmental filters influencing phytoplankton taxonomic structure in cascade reservoirs , 2020, Brazilian Journal of Botany.

[9]  Tinglin Huang,et al.  Community Compositions of Phytoplankton and Eukaryotes during the Mixing Periods of a Drinking Water Reservoir: Dynamics and Interactions , 2020, International journal of environmental research and public health.

[10]  J. Proal-Nájera,et al.  Prediction of Phytoplankton Biomass in Small Rivers of Central Spain by Data Mining Method of Partial Least-Squares Regression , 2019, Proceedings.

[11]  Jianhua Li,et al.  Driving Factors and Dynamics of Phytoplankton Community and Functional Groups in an Estuary Reservoir in the Yangtze River, China , 2019, Water.

[12]  T. Simčič,et al.  Modelling the effects of multiple stressors on respiration and microbial biomass in the hyporheic zone using decision trees. , 2019, Water research.

[13]  E. Afonina,et al.  Development of plankton communities in the anthropogenic hydrothermal conditions of Kenon Lake as a cooling reservoir (Transbaikalia) , 2019, IOP Conference Series: Earth and Environmental Science.

[14]  L. O. Crossetti,et al.  Effects of temperature increase and nutrient enrichment on phytoplankton functional groups in a Brazilian semi-arid reservoir , 2018, Acta Limnologica Brasiliensia.

[15]  Avi Arampatzis,et al.  Seagrass detection in the mediterranean: A supervised learning approach , 2018, Ecol. Informatics.

[16]  K. Havens,et al.  Ecological Responses of Lakes to Climate Change , 2018, Water.

[17]  M. Parsons,et al.  Phytoplankton diversity along spatial and temporal gradients in the Florida Keys , 2017 .

[18]  Anđelka Plenković-Moraj,et al.  Co-occurrence of functional groups in phytoplankton assemblages dominated by diatoms, chrysophytes and dinoflagellates , 2015 .

[19]  A. Kozak,et al.  Phytoplankton Composition and Abundance in Restored Maltański Reservoir under the Influence of Physico-Chemical Variables and Zooplankton Grazing Pressure , 2015, PloS one.

[20]  C. Wiedner,et al.  Predicting phytoplankton biomass and estimating critical N:P ratios with piecewise models that conform to Liebig's law of the minimum , 2015 .

[21]  N. Atanasova,et al.  Study of the impact of TIN/PO4 ratio on mucilage formation in the northern Adriatic using regression trees , 2015 .

[22]  L. C. Torgan,et al.  Which metric to choose? Differences between abundance and biomass responses to environmental conditions in a planktonic diatom community , 2015, Hydrobiologia.

[23]  อนิรุธ สืบสิงห์,et al.  Data Mining Practical Machine Learning Tools and Techniques , 2014 .

[24]  Kwang-Hyeon Chang,et al.  Plankton Community in Weir Section of the Nakdong River and Its Relation with Selected Environmental Factors , 2013 .

[25]  N. Atanasova,et al.  Fluctuations in water level and the dynamics of zooplankton: a data‐driven modelling approach , 2013 .

[26]  Mridul K. Thomas,et al.  Phytoplankton niches, traits and eco-evolutionary responses to global environmental change , 2012 .

[27]  F. Roland,et al.  Phytoplankton abundance, biomass and diversity within and between Pantanal wetland habitats , 2012 .

[28]  Badih Ghattas,et al.  A review of supervised machine learning algorithms and their applications to ecological data , 2012 .

[29]  H. Sarmento,et al.  The queer Tetraëdronminimum from Lake Kivu (Eastern Africa): is it a result of a human impact? , 2012, Hydrobiologia.

[30]  F. Roland,et al.  Phytoplankton biomass is mainly controlled by hydrology and phosphorus concentrations in tropical hydroelectric reservoirs , 2012, Hydrobiologia.

[31]  S. Rice Encyclopedia of Biodiversity , 2012 .

[32]  Robert I. McKay,et al.  Machine Learning for Predictive Management: Short and Long term Prediction of Phytoplankton Biomass using Genetic Algorithm Based Recurrent Neural Networks , 2012 .

[33]  G. Morabito,et al.  Strength and uncertainty of phytoplankton metrics for assessing eutrophication impacts in lakes , 2012, Hydrobiologia.

[34]  Goran Volf,et al.  Descriptive and prediction models of phytoplankton in the northern Adriatic , 2011 .

[35]  Hongjuan Wu,et al.  Effects of nitrogen and phosphorus on phytoplankton composition and biomass in 15 subtropical, urban shallow lakes in Wuhan, China , 2011 .

[36]  P. Hamilton,et al.  Phytoplankton community metrics based on absolute and relative abundance and biomass: implications for multivariate analyses , 2011, Journal of Applied Phycology.

[37]  Lan Wang,et al.  Weekly dynamics of phytoplankton functional groups under high water level fluctuations in a subtropical reservoir-bay , 2011, Aquatic Ecology.

[38]  Mark L. Blaxter,et al.  Second-generation environmental sequencing unmasks marine metazoan biodiversity , 2010, Nature communications.

[39]  E. Bellinger,et al.  Freshwater Algae: Identification and Use as Bioindicators , 2010 .

[40]  B. Beisner,et al.  Environmental factors controlling the vertical distribution of phytoplankton in lakes , 2009 .

[41]  N. Salmaso,et al.  Other Phytoflagellates and Groups of Lesser Importance , 2009 .

[42]  S. Schladow,et al.  Lake warming favours small-sized planktonic diatom species , 2008, Proceedings of the Royal Society B: Biological Sciences.

[43]  P. Dillon,et al.  Are diatoms good integrators of temporal variability in stream water quality , 2008 .

[44]  Sašo Džeroski,et al.  Application of automated model discovery from data and expert knowledge to a real-world domain: Lake Glumsø , 2008 .

[45]  Y. Lagadeuc,et al.  Phytoplankton species turnover controlled by physical forcing at different time scales , 2008 .

[46]  Elena Litchman,et al.  The role of functional traits and trade-offs in structuring phytoplankton communities: scaling from cellular to ecosystem level. , 2007, Ecology letters.

[47]  Michael S. Y. Lee,et al.  Stability, ranks, and the PhyloCode , 2007 .

[48]  N. Kamjunke,et al.  Phosphorus gain by bacterivory promotes the mixotrophic flagellate Dinobryon spp. during re-oligotrophication , 2006 .

[49]  J. Padisák,et al.  The Effects of Temperature, Nitrogen, and Phosphorus on the Encystment of Peridinium cinctum, Stein (Dinophyta) , 2006, Hydrobiologia.

[50]  Bárbara Medeiros Fonseca Diversidade fitoplanctônica como discriminador ambiental em dois reservatórios rasos com diferentes estados tróficos no Parque Estadual das Fontes do Ipiranga, São Paulo - SP , 2006 .

[51]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[52]  J. Grover,et al.  Seasonal dynamics of phytoplankton in two warm temperate reservoirs: association of taxonomic composition with temperature , 2006 .

[53]  S. Romo,et al.  Phytoplankton strategies and diversity under different nutrient levels and planktivorous fish densities in a shallow Mediterranean lake , 2005 .

[54]  K. R. Clarke,et al.  Taxonomic distinctness as a measure of diversity applied over a large scale: the benthos of the Norwegian continental shelf , 2005 .

[55]  J. Brookes,et al.  Vertical migration, entrainment and photosynthesis of the freshwater dinoflagellate Peridinium cinctum in a shallow urban lake , 2004 .

[56]  J. Padisák,et al.  Deep chlorophyll maximum by Ceratium hirundinella (O. F. Müller) Bergh in a shallow oxbow in Hungary , 2003, Hydrobiologia.

[57]  J. Truu,et al.  Distribution of benthic diatoms in relation to environmental variables in lowland streams , 2003, Hydrobiologia.

[58]  Maria Rosa Miracle,et al.  Summer phytoplankton assemblages across trophic gradients in hard-water reservoirs , 1998, Hydrobiologia.

[59]  S. Heaney,et al.  Population dynamics of Ceratium spp. in three English lakes, 1945–1985 , 1988, Hydrobiologia.

[60]  J. Lund,et al.  The inverted microscope method of estimating algal numbers and the statistical basis of estimations by counting , 1958, Hydrobiologia.

[61]  C. Reynolds What factors influence the species composition of phytoplankton in lakes of different trophic status? , 2004, Hydrobiologia.

[62]  C. Reynolds,et al.  The Lakes Handbook, Volume 1 , 2003 .

[63]  P. Andersen,et al.  Estimating cell numbers , 2003 .

[64]  Colin S. Reynolds,et al.  Towards a functional classification of the freshwater phytoplankton , 2002 .

[65]  Peter A. Flach On the state of the art in machine learning: A personal review , 2001, Artif. Intell..

[66]  S. Heaney,et al.  Temperature, growth and seasonal succession of phytoplankton in Lake Baikal, Siberia , 2000 .

[67]  T. Andersen Vegetation Processes in the Pelagic: A Model for Ecosystem Theory. , 1998 .

[68]  A. Çetin Diatoms (Bacillariophyta) in the Phytoplankton of Keban Reservoir and Their Seasonal Variations , 1998 .

[69]  P. Somerfield,et al.  Relationships between taxonomic resolution and data transformations in analyses of a macrobenthic community along an established pollution gradient , 1997 .

[70]  Colin S. Reynolds,et al.  Vegetation processes in the pelagic : a model for ecosystem theory , 1997 .

[71]  P. Falkowski,et al.  Aquatic Photosynthesis: Second Edition , 1997 .

[72]  金田 重郎,et al.  C4.5: Programs for Machine Learning (書評) , 1995 .

[73]  K. Nicholls Chrysophyte Algae: Chrysophyte blooms in the plankton and neuston of marine and freshwater systems , 1992 .

[74]  B. J. Speziale,et al.  Physiological Characteristics of Vertically-Stratified Lyngbya wollei Mats , 1991 .

[75]  K. Anagnostidis,et al.  Modern approach to the classification system of cyanophytes. 3 - Oscillatoriales , 1988 .

[76]  Pertti Heinonen,et al.  Quantity and composition of phytoplankton in Finnish inland waters , 1980 .

[77]  J. T. Lehman Ecological and nutritional studies on Dinobryon Ehrenb.: Seasonal periodicity and the phosphate toxicity problem , 1976 .

[78]  H. Utermöhl Zur Vervollkommnung der quantitativen Phytoplankton-Methodik , 1958 .

[79]  G. Nygaard Quotient hypothesis and some new or little known phytoplankton organisms , 1949 .

[80]  E. H. Simpson Measurement of Diversity , 1949, Nature.

[81]  Sven Thunmark Zur Soziologie des Süsswasserplanktons : eine methodologisch-ökologische Studie , 1945 .