Concepts of quantum non-Markovianity: A hierarchy

Markovian approximation is a widely-employed idea in descriptions of the dynamics of open quantum systems (OQSs). Although it is usually claimed to be a concept inspired by classical Markovianity, the term quantum Markovianity is used inconsistently and often unrigorously in the literature. In this report we compare the descriptions of classical stochastic processes and quantum stochastic processes (as arising in OQSs), and show that there are inherent differences that lead to the non-trivial problem of characterizing quantum non-Markovianity. Rather than proposing a single definition of quantum Markovianity, we study a host of Markov-related concepts in the quantum regime. Some of these concepts have long been used in quantum theory, such as quantum white noise, factorization approximation, divisibility, Lindblad master equation, etc.. Others are first proposed in this report, including those we call past-future independence, no (quantum) information backflow, and composability. All of these concepts are defined under a unified framework, which allows us to rigorously build hierarchy relations among them. With various examples, we argue that the current most often used definitions of quantum Markovianity in the literature do not fully capture the memoryless property of OQSs. In fact, quantum non-Markovianity is highly context-dependent. The results in this report, summarized as a hierarchy figure, bring clarity to the nature of quantum non-Markovianity.

[1]  T. Heinosaari,et al.  The Mathematical Language of Quantum Theory: From Uncertainty to Entanglement , 2012 .

[2]  E. Hahn,et al.  Spin Echoes , 2011 .

[3]  Joseph Kerckhoff,et al.  The SLH framework for modeling quantum input-output networks , 2016, 1611.00375.

[4]  E. Sudarshan,et al.  Completely Positive Dynamical Semigroups of N Level Systems , 1976 .

[5]  Joonwoo Bae,et al.  Operational Characterization of Divisibility of Dynamical Maps. , 2016, Physical review letters.

[6]  M. Ruskai,et al.  Entanglement Breaking Channels , 2003, quant-ph/0302031.

[7]  Steen Pedersen,et al.  Introduction to Continuity , 2015 .

[8]  Bassano Vacchini,et al.  Quantum regression theorem and non-Markovianity of quantum dynamics , 2014, 1406.5340.

[9]  I. I. Gikhman,et al.  The Theory of Stochastic Processes III , 1979 .

[10]  Raymond Laflamme,et al.  Quantum Computers, Factoring, and Decoherence , 1995, Science.

[11]  Michael J. W. Hall,et al.  Complete positivity for time-dependent qubit master equations , 2008, 0802.0606.

[12]  Robin L. Hudson,et al.  Unification of fermion and Boson stochastic calculus , 1986 .

[13]  R. Zwanzig Ensemble Method in the Theory of Irreversibility , 1960 .

[14]  Alain M Robert Linear Algebra: Examples And Applications , 2005 .

[15]  G. Lindblad On the generators of quantum dynamical semigroups , 1976 .

[16]  Mario Ziman,et al.  All (qubit) decoherences: Complete characterization and physical implementation , 2005 .

[17]  N. Bohr II - Can Quantum-Mechanical Description of Physical Reality be Considered Complete? , 1935 .

[18]  F. Petruccione,et al.  Non-Markovianity criteria for open system dynamics , 2014, 1401.1126.

[19]  Vaidman,et al.  How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100. , 1988, Physical review letters.

[20]  G. Milburn,et al.  Quantum Measurement and Control , 2009 .

[21]  Julian Schwinger,et al.  Brownian Motion of a Quantum Oscillator , 1961 .

[22]  S. Brush A history of random processes , 1968 .

[23]  Castin,et al.  Monte Carlo wave-function analysis of 3D optical molasses. , 1995, Physical review letters.

[24]  Zoller,et al.  Monte Carlo simulation of the atomic master equation for spontaneous emission. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[25]  P. Zoller,et al.  Quantum wave function simulation of the resonance fluorescence spectrum from one-dimensional optical molasses. , 1993, Physical review letters.

[26]  Melvin Lax,et al.  The Lax–Onsager regression `theorem' revisited , 2000 .

[27]  R. Adler An introduction to continuity, extrema, and related topics for general Gaussian processes , 1990 .

[28]  Y. Makhlin,et al.  Quantum-state engineering with Josephson-junction devices , 2000, cond-mat/0011269.

[29]  C. Gardiner,et al.  Quantum Noise: A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods with Applications to Quantum Optics , 2004 .

[30]  R Hanson,et al.  Universal Dynamical Decoupling of a Single Solid-State Spin from a Spin Bath , 2010, Science.

[31]  C. P. Sun,et al.  Quantum Fisher information flow and non-Markovian processes of open systems , 2009, 0912.0587.

[32]  V. Belavkin,et al.  Nondemolition observation of a free quantum particle. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[33]  G. Karpat,et al.  Non-Markovianity through flow of information between a system and an environment , 2014, 1410.2504.

[34]  B. Harshbarger An Introduction to Probability Theory and its Applications, Volume I , 1958 .

[35]  Francesco Ciccarello,et al.  Dynamical decoupling efficiency versus quantum non-Markovianity , 2015, 1502.02528.

[36]  L. Davidovich,et al.  Decoherence, pointer engineering, and quantum state protection. , 2001, Physical review letters.

[37]  D. Janzing,et al.  A quantum advantage for inferring causal structure , 2015, Nature Physics.

[38]  A. Holevo Statistical structure of quantum theory , 2001 .

[39]  F. Shibata,et al.  Time-convolutionless projection operator formalism for elimination of fast variables. Applications to Brownian motion , 1979 .

[40]  F. Nori,et al.  Quantum biology , 2012, Nature Physics.

[41]  R. F. O'Connell,et al.  Comment on “The Lax-Onsager Regression “Theorem” revisited” , 2000 .

[42]  B. Muzykantskii,et al.  ON QUANTUM NOISE , 1995 .

[43]  Po-Wen Chen,et al.  Non-Markovian finite-temperature two-time correlation functions of system operators: beyond the quantum regression theorem. , 2011, The Journal of chemical physics.

[44]  B. R. Mollow Power spectrum of light scattered by two-level systems , 1969 .

[45]  W H Wong,et al.  Dynamic weighting in Monte Carlo and optimization. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[46]  S. Huelga,et al.  Quantum non-Markovianity: characterization, quantification and detection , 2014, Reports on progress in physics. Physical Society.

[47]  Lars Onsager,et al.  Fluctuations and Irreversible Process. II. Systems with Kinetic Energy , 1953 .

[48]  Matthew R. James,et al.  The Series Product and Its Application to Quantum Feedforward and Feedback Networks , 2007, IEEE Transactions on Automatic Control.

[49]  J. Cirac,et al.  Dividing Quantum Channels , 2006, math-ph/0611057.

[50]  S. Nakajima On Quantum Theory of Transport Phenomena Steady Diffusion , 1958 .

[51]  N. Datta,et al.  Equivalence between divisibility and monotonic decrease of information in classical and quantum stochastic processes , 2014, 1408.7062.

[52]  J M Gambetta,et al.  Pure-state quantum trajectories for general non-Markovian systems do not exist. , 2008, Physical review letters.

[53]  Hendra Ishwara Nurdin,et al.  Can quantum Markov evolutions ever be dynamically decoupled? , 2017, 2017 IEEE 56th Annual Conference on Decision and Control (CDC).

[54]  Melvin Lax,et al.  Quantum Noise. IV. Quantum Theory of Noise Sources , 1966 .

[55]  Göran Lindblad,et al.  Non-equilibrium entropy and irreversibility , 1983 .

[56]  V. Buzek,et al.  Simulation of indivisible qubit channels in collision models , 2012, 1202.6315.

[57]  M. Gregoratti,et al.  The Hamiltonian Operator Associated with Some Quantum Stochastic Evolutions , 2001 .

[58]  N. Metropolis,et al.  The Monte Carlo method. , 1949 .

[59]  H. Carmichael Statistical Methods in Quantum Optics 1 , 1999 .

[60]  G. S. Agarwal,et al.  Master Equations in Phase-Space Formulation of Quantum Optics , 1969 .

[61]  A. Einstein Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen [AdP 17, 549 (1905)] , 2005, Annalen der Physik.

[62]  J. Hammersley SIMULATION AND THE MONTE CARLO METHOD , 1982 .

[63]  V. Scarani,et al.  Thermalizing quantum machines: dissipation and entanglement. , 2001, Physical review letters.

[64]  P. Knight,et al.  The Quantum jump approach to dissipative dynamics in quantum optics , 1997, quant-ph/9702007.

[65]  Michael J. Biercuk,et al.  Optimized dynamical decoupling in a model quantum memory , 2008, Nature.

[66]  Robert Zwanzig,et al.  On the identity of three generalized master equations , 1964 .

[67]  Ford,et al.  There is No Quantum Regression Theorem. , 1996, Physical review letters.

[68]  W. Strunz,et al.  Hierarchy of stochastic pure states for open quantum system dynamics. , 2014, Physical review letters.

[69]  Viola,et al.  Theory of quantum error correction for general noise , 2000, Physical review letters.

[70]  A. Kossakowski,et al.  On quantum statistical mechanics of non-Hamiltonian systems , 1972 .

[71]  Brun,et al.  Quantum-state diffusion with a moving basis: Computing quantum-optical spectra. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[72]  W. Feller Non-Markovian Processes with the Semigroup Property , 1959 .

[74]  Daniel A. Lidar,et al.  Decoherence-Free Subspaces for Quantum Computation , 1998, quant-ph/9807004.

[75]  C. Gardiner Stochastic Methods: A Handbook for the Natural and Social Sciences , 2009 .

[76]  Singh,et al.  Photoelectron waiting times and atomic state reduction in resonance fluorescence. , 1989, Physical review. A, General physics.

[77]  Fabio Costa,et al.  Quantum causal modelling , 2015, 1512.07106.

[78]  A. Winter,et al.  Communications in Mathematical Physics Structure of States Which Satisfy Strong Subadditivity of Quantum Entropy with Equality , 2022 .

[79]  Francesco Petruccione,et al.  The Theory of Open Quantum Systems , 2002 .

[80]  Peter Talkner,et al.  The failure of the quantum regression hypothesis , 1986 .

[81]  G. Guo,et al.  Experimental control of the transition from Markovian to non-Markovian dynamics of open quantum systems , 2011, 1109.2677.

[82]  Dariusz Chruściński,et al.  Non-Markovian quantum dynamics: local versus nonlocal. , 2009, Physical review letters.

[83]  S. Luo,et al.  Quantifying non-Markovianity via correlations , 2012 .

[84]  E. Schrödinger Discussion of Probability Relations between Separated Systems , 1935, Mathematical Proceedings of the Cambridge Philosophical Society.

[85]  Jyrki Piilo,et al.  Measure for the degree of non-markovian behavior of quantum processes in open systems. , 2009, Physical review letters.

[86]  Luigi Accardi,et al.  Quantum Stochastic Processes , 1982 .

[87]  A. V. Skorohod,et al.  The theory of stochastic processes , 1974 .

[88]  M. S. Zubairy,et al.  Quantum optics: Dedication , 1997 .

[89]  S. Lloyd,et al.  DYNAMICAL SUPPRESSION OF DECOHERENCE IN TWO-STATE QUANTUM SYSTEMS , 1998, quant-ph/9803057.

[90]  M. Scully,et al.  Statistical Methods in Quantum Optics 1: Master Equations and Fokker-Planck Equations , 2003 .

[91]  Melvin Lax,et al.  FORMAL THEORY OF QUANTUM FLUCTUATIONS FROM A DRIVEN STATE , 1963 .

[92]  H. M. Wiseman,et al.  Jumplike unravelings for non-Markovian open quantum systems , 2004 .

[93]  Francesco Petruccione,et al.  Stochastic wave-function approach to the calculation of multitime correlation functions of open quantum systems , 1997 .

[94]  Luigi Accardi,et al.  Nonrelativistic Quantum Mechanics as a Noncommutative Markof Process , 1976 .

[95]  M. Born Quantenmechanik der Stoßvorgänge , 1926 .

[96]  Paolo Facchi,et al.  Dynamical decoupling of unbounded Hamiltonians , 2017, 1704.06143.

[97]  P. Brémaud Point processes and queues, martingale dynamics , 1983 .

[98]  Elsi-Mari Laine,et al.  Colloquium: Non-Markovian dynamics in open quantum systems , 2015, 1505.01385.

[99]  Yoshinori Takahashi,et al.  A generalized stochastic liouville equation. Non-Markovian versus memoryless master equations , 1977 .

[100]  Martin Fraas,et al.  Distinguishing decoherence from alternative quantum theories by dynamical decoupling , 2014, 1405.7644.

[101]  Antonio Acín,et al.  Constructive Method for Detecting the Information Backflow of Non-Markovian Dynamics. , 2017, Physical review letters.

[102]  D. Lidar,et al.  Fault-tolerant quantum dynamical decoupling , 2004, 2005 Quantum Electronics and Laser Science Conference.

[103]  P. L. Kelley,et al.  Theory of Spin Resonance and Relaxation , 1964 .

[104]  Klaus Mølmer,et al.  A Monte Carlo wave function method in quantum optics , 1993, Optical Society of America Annual Meeting.

[105]  R. K. Wangsness,et al.  The Dynamical Theory of Nuclear Induction , 1953 .

[106]  Lajos Diósi,et al.  Non-markovian continuous quantum measurement of retarded observables. , 2008, Physical review letters.

[107]  Dirk Bouwmeester,et al.  The physics of quantum information: quantum cryptography, quantum teleportation, quantum computation , 2010, Physics and astronomy online library.

[108]  Göran Lindblad,et al.  Non-Markovian quantum stochastic processes and their entropy , 1979 .

[109]  C. Helstrom Quantum detection and estimation theory , 1969 .

[110]  Peter Hänggi,et al.  Stochastic processes: Time evolution, symmetries and linear response , 1982 .

[111]  N. Gisin,et al.  Non-Markovian quantum state diffusion , 1998, quant-ph/9803062.

[112]  Alberto Barchielli,et al.  Stochastic differential equations anda posteriori states in quantum mechanics , 1993 .

[113]  Imamoglu Stochastic wave-function approach to non-Markovian systems. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[114]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1951 .

[115]  K. Mølmer,et al.  Wave-function approach to dissipative processes in quantum optics. , 1992, Physical review letters.

[116]  Viacheslav P. Belavkin,et al.  Nondemolition measurements, nonlinear filtering and dynamic programming of quantum stochastic processes , 1989 .

[117]  Gardiner,et al.  Wave-function quantum stochastic differential equations and quantum-jump simulation methods. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[118]  Li Li,et al.  Canonical form of master equations and characterization of non-Markovianity , 2010, 1009.0845.

[119]  Collett,et al.  Input and output in damped quantum systems: Quantum stochastic differential equations and the master equation. , 1985, Physical review. A, General physics.

[120]  G. Karpat,et al.  Non-Markovianity through Accessible Information , 2014, 1402.5395.

[121]  D. Cory,et al.  Noise spectroscopy through dynamical decoupling with a superconducting flux qubit , 2011 .

[122]  Lars Onsager,et al.  Fluctuations and Irreversible Processes , 1953 .

[123]  Jian Wang,et al.  Lévy Matters III , 2013 .

[124]  Susana F. Huelga,et al.  Open Quantum Systems: An Introduction , 2011, 1104.5242.

[125]  Valeriy Naumov,et al.  The life and work of A.A. Markov , 2004 .

[126]  Guang-Can Guo,et al.  Measuring non-Markovianity of processes with controllable system-environment interaction , 2011, 1109.2438.

[127]  I. I. Gikhman,et al.  The Theory of Stochastic Processes II , 1975 .

[128]  G. Grimmett,et al.  Probability and random processes , 2002 .

[129]  M. Keyl Fundamentals of quantum information theory , 2002, quant-ph/0202122.

[130]  Ting Yu,et al.  Non-Markovian quantum state diffusion: Perturbation approach , 1999, quant-ph/9902043.

[131]  U. Weiss Quantum Dissipative Systems , 1993 .

[132]  H. M. Wiseman Quantum trajectories and quantum measurement theory , 1996 .

[133]  V. Giovannetti,et al.  Collision-model-based approach to non-Markovian quantum dynamics , 2012, 1207.6554.

[134]  V. P. Belavkin,et al.  A new wave equation for a continuous nondemolition measurement , 1989 .

[135]  Mário Ziman,et al.  Diluting quantum information: An analysis of information transfer in system-reservoir interactions , 2002 .

[136]  Andrzej Kossakowski,et al.  Markovianity criteria for quantum evolution , 2012, 1201.5987.

[137]  H. M. Wiseman,et al.  Interpretation of non-Markovian stochastic Schrödinger equations as a hidden-variable theory , 2003 .

[138]  E. Knill,et al.  DYNAMICAL DECOUPLING OF OPEN QUANTUM SYSTEMS , 1998, quant-ph/9809071.

[139]  H. Carmichael An open systems approach to quantum optics , 1993 .

[140]  Man-Duen Choi Completely positive linear maps on complex matrices , 1975 .

[141]  Seth Lloyd,et al.  Gaussian quantum information , 2011, 1110.3234.

[142]  Gérard G. Emch,et al.  Nonequilibrium Statistical Mechanics of Open Systems , 1968 .

[143]  Alfred G. Redfield,et al.  On the Theory of Relaxation Processes , 1957, IBM J. Res. Dev..

[144]  M. Paternostro,et al.  Non-Markovian quantum processes: Complete framework and efficient characterization , 2015, 1512.00589.

[145]  Heinz-Peter Breuer Genuine quantum trajectories for non-Markovian processes , 2004 .

[146]  Thora Tenbrink,et al.  Reference Frames , 2017, Encyclopedia of GIS.

[147]  D. Chru'sci'nski,et al.  Measures of non-Markovianity: Divisibility versus backflow of information , 2011, 1102.4318.

[148]  Klaus Mølmer,et al.  Monte Carlo wavefunctions in quantum optics , 1996 .

[149]  A. G. Redfield,et al.  The Theory of Relaxation Processes , 1965 .

[150]  R. Needs,et al.  Quantum Monte Carlo simulations of solids , 2001 .

[151]  Michael J. W. Hall,et al.  Finding the Kraus decomposition from a master equation and vice versa , 2007, 0801.4100.

[152]  Yuan-Chung Cheng,et al.  An efficient quantum jump method for coherent energy transfer dynamics in photosynthetic systems under the influence of laser fields , 2014, 1404.2052.

[153]  H. M. Wiseman,et al.  Perturbative approach to non-Markovian stochastic Schrödinger equations , 2002 .

[154]  Thomas Frauenheim,et al.  Operational Markov Condition for Quantum Processes. , 2018, Physical review letters.

[155]  Milburn,et al.  Interpretation of quantum jump and diffusion processes illustrated on the Bloch sphere. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[156]  C. Monroe,et al.  Decoherence of quantum superpositions through coupling to engineered reservoirs , 2000, Nature.

[157]  A. N. Korotkov,et al.  Stabilizing Rabi oscillations in a superconducting qubit using quantum feedback , 2012, Nature.

[158]  Wei-Min Zhang,et al.  Non-Markovianity measure using two-time correlation functions , 2015 .

[159]  T. Rudolph,et al.  Reference frames, superselection rules, and quantum information , 2006, quant-ph/0610030.

[160]  W. Stinespring Positive functions on *-algebras , 1955 .

[161]  Susana F Huelga,et al.  Entanglement and non-markovianity of quantum evolutions. , 2009, Physical review letters.

[162]  Jyrki Piilo,et al.  Non-Markovian quantum jumps. , 2007, Physical review letters.

[163]  Robin L. Hudson,et al.  Quantum Ito's formula and stochastic evolutions , 1984 .

[164]  P. Talkner,et al.  Note on time evolution of non-Markov processes , 1978 .

[165]  Mazyar Mirrahimi,et al.  Real-time quantum feedback prepares and stabilizes photon number states , 2011, Nature.

[166]  Shuntaro Takeda,et al.  Quantum-Enhanced Optical-Phase Tracking , 2012, Science.

[167]  Carmichael,et al.  Quantum trajectory theory for cascaded open systems. , 1993, Physical review letters.

[168]  H. M. Wiseman,et al.  Complete parametrizations of diffusive quantum monitorings , 2011, 1102.3073.

[169]  Elsi-Mari Laine,et al.  Markovianity and non-Markovianity in quantum and classical systems , 2011, 1106.0138.

[170]  Jayaseetha Rau Relaxation Phenomena in Spin and Harmonic Oscillator Systems , 1963 .

[171]  H. Risken,et al.  Quantum fluctuations, master equation and Fokker-Planck equation , 1966 .

[172]  Tobias Brandes,et al.  Coherent and Collective Quantum Optical Effects in Mesoscopic Systems , 2004, cond-mat/0409771.

[173]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.