Artificial Neural Network Approach for Land Cover Classification of Fused Hyperspectral and Lidar Data

Hyperspectral remote sensing images are consisted of several hundreds of contiguous spectral bands that can provide very rich information and has the potential to differentiate land cover classes with similar spectral characteristics. LIDAR data gives detailed height information and thus can be used complementary with Hyperspectral data. In this work, a hyperspectral image is combined with LIDAR data and used for land cover classification. A Principal Component Analysis (PCA) is applied on the Hyperspectral image to perform feature extraction and dimension reduction. The first 4 PCA components along with the LIDAR image were used as inputs to a supervised feedforward neural network. The neural network was trained in a small part of the dataset (less than 0.4%) and a validation set, using the Bayesian regularization backpropagation algorithm. The experimental results demonstrate efficiency of the method for hyperspectral and LIDAR land cover classification.