Voltage limitation analysis in strain-balanced InAs/GaAsN quantum dot solar cells applied to the intermediate band concept

[1]  A. Luque,et al.  Increasing the Efficiency of Ideal Solar Cells by Photon Induced Transitions at Intermediate Levels , 1997 .

[2]  Yoshitaka Okada,et al.  Highly packed InGaAs quantum dots on GaAs(311)B , 1998 .

[3]  Wladek Walukiewicz,et al.  Band Anticrossing in GaInNAs Alloys , 1999 .

[4]  M. Sugawara Self-assembled InGaAs/GaAs, quantum dots , 1999 .

[5]  A. Luque,et al.  Partial filling of a quantum dot intermediate band for solar cells , 2001 .

[6]  Wladek Walukiewicz,et al.  Band anticrossing in highly mismatched III-V semiconductor alloys , 2002 .

[7]  C. D. Farmer,et al.  Production of photocurrent due to intermediate-to-conduction-band transitions: a demonstration of a key operating principle of the intermediate-band solar cell. , 2006, Physical review letters.

[8]  C. D. Farmer,et al.  Emitter degradation in quantum dot intermediate band solar cells , 2007 .

[9]  Antonio Luque,et al.  Elements of the design and analysis of quantum-dot intermediate band solar cells , 2008 .

[10]  Yoshitaka Okada,et al.  Strain-compensated InAs/GaNAs quantum dots for use in high-efficiency solar cells , 2008 .

[11]  A. Zunger,et al.  Theoretical and experimental examination of the intermediate-band concept for strain-balanced (In,Ga)As/Ga(As,P) quantum dot solar cells , 2008 .

[12]  Antonio Luque,et al.  Plasmonic light enhancement in the near-field of metallic nanospheroids for application in intermediate band solar cells , 2009 .

[13]  Antonio Martí Vega,et al.  Raising the Efficiency Limit of the GaAs-based Intermediate Band Solar Cell Through the Implementation of a Mololithic Tandem with an AlGaAs top Cell. , 2010 .

[14]  C. D. Farmer,et al.  Advances in quantum dot intermediate band solar cells , 2010, 2010 35th IEEE Photovoltaic Specialists Conference.

[15]  Antonio Luque,et al.  Reducing carrier escape in the InAs/GaAs quantum dot intermediate band solar cell , 2010 .

[16]  A. Luque,et al.  Intraband absorption for normal illumination in quantum dot intermediate band solar cells , 2010 .

[17]  A. Luque,et al.  On the Partial Filling of the Intermediate Band in IB Solar Cells , 2010, IEEE Transactions on Electron Devices.

[18]  K. Yu,et al.  Engineering the electronic band structure for multiband solar cells. , 2011, Physical review letters.

[19]  Yoshitaka Okada,et al.  Increase in photocurrent by optical transitions via intermediate quantum states in direct-doped InAs/GaNAs strain-compensated quantum dot solar cell , 2011 .

[20]  A. Luque,et al.  Upper limits to absorption enhancement in thick solar cells using diffraction gratings , 2011 .

[21]  A. Luque,et al.  III-V compound semiconductor screening for implementing quantum dot intermediate band solar cells , 2011 .

[22]  C. D. Farmer,et al.  Voltage recovery in intermediate band solar cells , 2012 .

[23]  A. Luque,et al.  Some advantages of intermediate band solar cells based on type II quantum dots , 2013 .

[24]  C. Stanley,et al.  Extreme voltage recovery in GaAs:Ti intermediate band solar cells , 2013 .

[25]  Low-Temperature Concentrated Light Characterization Applied to Intermediate Band Solar Cells , 2013, IEEE Journal of Photovoltaics.

[26]  C. Tu,et al.  Electronic Band Structure of GaN x P y As 1 − x − y Highly Mismatched Alloys: Suitability for Intermediate-Band Solar Cells , 2014 .