Uncertainty quantification methodology for hyperbolic systems with application to blood flow in arteries

Abstract We present a Stochastic Finite Volume - ADER (SFV-ADER) methodology for Uncertainty Quantification (UQ) in the general framework of systems of hyperbolic balance laws with uncertainty in parameters. The resulting method is weakly intrusive, meaning that deterministic solvers need minor modifications to include random contributions, and has no theoretical accuracy barrier. An illustration of the second-order version for the viscous Burgers equation with uncertain viscosity coefficient is first given in detail, under different deterministic initial conditions; the attainment of the theoretically expected convergence rate is demonstrated empirically; results and features of our scheme are discussed. We then extend the SFV-ADER method to a non-linear hyperbolic system with source terms that models one-dimensional blood flow in arteries, assuming uncertainties in a set of parameters of the problem. Results are then compared with measurements in a well-defined 1:1 experimental replica of the network of largest arteries in the human systemic circulation. For a 99%-confidence level, severe influence of parameter fluctuations is seen in pressure profiles, while secondary effects on flow rate profiles become visible, particularly in terminal branches. Results suggest that the proposed methodology could successfully be applied to other physical problems involving hyperbolic balance laws.

[1]  Rémi Abgrall A simple, flexible and generic deterministic approach to uncertainty quantifications in non linear problems: application to fluid flow problems , 2008 .

[2]  M. Olufsen,et al.  Numerical Simulation and Experimental Validation of Blood Flow in Arteries with Structured-Tree Outflow Conditions , 2000, Annals of Biomedical Engineering.

[3]  Michael Dumbser,et al.  A unified framework for the construction of one-step finite volume and discontinuous Galerkin schemes on unstructured meshes , 2008, J. Comput. Phys..

[4]  F. Lazeyras,et al.  Validation of a patient-specific one-dimensional model of the systemic arterial tree. , 2011, American journal of physiology. Heart and circulatory physiology.

[5]  J AlastrueyArimon Numerical modelling of pulse wave propagation in the cardiovascular system : development, validation and clinical applications. , 2006 .

[6]  Svetlana Tokareva,et al.  High order approximation of probabilistic shock profiles in hyperbolic conservation laws with uncertain initial data , 2013 .

[7]  Michael Dumbser,et al.  ADER discontinuous Galerkin schemes for aeroacoustics , 2005 .

[8]  Charles E. Clark,et al.  Monte Carlo , 2006 .

[9]  H. Najm,et al.  A stochastic projection method for fluid flow II.: random process , 2002 .

[10]  Alfio Quarteroni,et al.  Computational vascular fluid dynamics: problems, models and methods , 2000 .

[11]  G. Strang On the Construction and Comparison of Difference Schemes , 1968 .

[12]  E. Toro,et al.  Solution of the generalized Riemann problem for advection–reaction equations , 2002, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[13]  Rémi Abgrall,et al.  A semi-intrusive deterministic approach to uncertainty quantification in non-linear fluid flow problems , 2013, J. Comput. Phys..

[14]  Lucas O. Müller,et al.  Hyperbolic reformulation of a 1D viscoelastic blood flow model and ADER finite volume schemes , 2014, J. Comput. Phys..

[15]  M. Lemaire,et al.  Stochastic Finite Elements , 2010 .

[16]  N. Stergiopulos,et al.  Validation of a one-dimensional model of the systemic arterial tree. , 2009, American journal of physiology. Heart and circulatory physiology.

[17]  D. Xiu,et al.  Modeling Uncertainty in Steady State Diffusion Problems via Generalized Polynomial Chaos , 2002 .

[18]  Jonas Šukys Robust multi-level Monte Carlo finite volume methods for systems of hyperbolic conservation laws with random input data , 2014 .

[19]  Eleuterio F. Toro,et al.  Advection-Diffusion-Reaction Equations: Hyperbolization and High-Order ADER Discretizations , 2014, SIAM J. Sci. Comput..

[20]  E. Toro Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .

[21]  Thomas Y. Hou,et al.  A dynamically bi-orthogonal method for time-dependent stochastic partial differential equations I: Derivation and algorithms , 2013, J. Comput. Phys..

[22]  Christopher J. Roy,et al.  A comprehensive framework for verification, validation, and uncertainty quantification in scientific computing , 2011 .

[23]  P J Blanco,et al.  A computational approach to generate concurrent arterial networks in vascular territories , 2013, International journal for numerical methods in biomedical engineering.

[24]  Raul Borsche,et al.  Junction-Generalized Riemann Problem for stiff hyperbolic balance laws in networks: An implicit solver and ADER schemes , 2016, J. Comput. Phys..

[25]  S. Sherwin,et al.  Reduced modelling of blood flow in the cerebral circulation: Coupling 1‐D, 0‐D and cerebral auto‐regulation models , 2008 .

[26]  P. Blanco,et al.  A unified variational approach for coupling 3D-1D models and its blood flow applications , 2007 .

[27]  P Segers,et al.  Experimental validation of a pulse wave propagation model for predicting hemodynamics after vascular access surgery. , 2012, Journal of biomechanics.

[28]  S. Osher,et al.  Uniformly high order accurate essentially non-oscillatory schemes, 111 , 1987 .

[29]  Lucas O. Müller,et al.  Well‐balanced high‐order solver for blood flow in networks of vessels with variable properties , 2013, International journal for numerical methods in biomedical engineering.

[30]  Perry A. Newman,et al.  Some Advanced Concepts in Discrete Aerodynamic Sensitivity Analysis , 2001 .

[31]  Eleuterio F. Toro,et al.  ADER: Arbitrary High Order Godunov Approach , 2002, J. Sci. Comput..

[32]  Siddhartha Mishra,et al.  Sparse tensor multi-level Monte Carlo finite volume methods for hyperbolic conservation laws with random initial data , 2012, Math. Comput..

[33]  G. Karniadakis,et al.  An adaptive multi-element generalized polynomial chaos method for stochastic differential equations , 2005 .

[34]  Eleuterio F. Toro,et al.  Towards Very High Order Godunov Schemes , 2001 .

[35]  N. Wiener The Homogeneous Chaos , 1938 .

[36]  S. Sherwin,et al.  Pulse wave propagation in a model human arterial network: Assessment of 1-D visco-elastic simulations against in vitro measurements , 2011, Journal of biomechanics.

[37]  Fabio Nobile,et al.  A Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..

[38]  Lucas O Müller,et al.  A global multiscale mathematical model for the human circulation with emphasis on the venous system , 2014, International journal for numerical methods in biomedical engineering.

[39]  Alexandre Ern,et al.  Intrusive Galerkin methods with upwinding for uncertain nonlinear hyperbolic systems , 2010, J. Comput. Phys..

[40]  D. F. Young,et al.  Computer simulation of arterial flow with applications to arterial and aortic stenoses. , 1992, Journal of biomechanics.

[41]  H. Bijl,et al.  Probabilistic collocation used in a Two-Step approached for efficient uncertainty quantification in computational fluid dynamics , 2009 .

[42]  Spencer J. Sherwin,et al.  Computational modelling of 1D blood flow with variable mechanical properties and its application to the simulation of wave propagation in the human arterial system , 2003 .

[43]  Lucas O. Müller,et al.  A high order approximation of hyperbolic conservation laws in networks: Application to one-dimensional blood flow , 2015, J. Comput. Phys..

[44]  Svetlana Tokareva,et al.  Stochastic finite volume methods for computational uncertainty quantification in hyperbolic conservation laws , 2013 .

[45]  J P Mynard,et al.  A simple, versatile valve model for use in lumped parameter and one‐dimensional cardiovascular models , 2012, International journal for numerical methods in biomedical engineering.

[46]  Armin Iske,et al.  ADER schemes on adaptive triangular meshes for scalar conservation laws , 2005 .

[47]  Jonas Sukys,et al.  Multilevel Monte Carlo Finite Volume Methods for Shallow Water Equations with Uncertain Topography in Multi-dimensions , 2012, SIAM J. Sci. Comput..

[48]  Pablo J Blanco,et al.  Blood flow distribution in an anatomically detailed arterial network model: criteria and algorithms , 2014, Biomechanics and modeling in mechanobiology.

[49]  Timothy J. Barth,et al.  On the propagation of statistical model parameter uncertainty in CFD calculations , 2012 .

[50]  BabuskaIvo,et al.  A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007 .

[51]  Timothy G. Trucano,et al.  Verification and Validation in Computational Fluid Dynamics , 2002 .

[52]  Xiu Yang,et al.  Enabling High-Dimensional Hierarchical Uncertainty Quantification by ANOVA and Tensor-Train Decomposition , 2014, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[53]  D. Xiu,et al.  Modeling uncertainty in flow simulations via generalized polynomial chaos , 2003 .

[54]  Eleuterio F. Toro,et al.  Brain venous haemodynamics, neurological diseases and mathematical modelling. A review , 2016, Appl. Math. Comput..

[55]  Timothy J. Barth,et al.  Non-intrusive Uncertainty Propagation with Error Bounds for Conservation Laws Containing Discontinuities , 2013, Uncertainty Quantification in Computational Fluid Dynamics.

[56]  S. Sherwin,et al.  One-dimensional modelling of a vascular network in space-time variables , 2003 .

[57]  Jeroen A. S. Witteveen,et al.  Efficient Quantification of the Effect of Uncertainties in Advection-Diffusion Problems Using Polynomial Chaos , 2008 .

[58]  O. Ernst,et al.  ON THE CONVERGENCE OF GENERALIZED POLYNOMIAL CHAOS EXPANSIONS , 2011 .

[59]  Federica Caforio,et al.  Assessment of reduced-order unscented Kalman filter for parameter identification in 1-dimensional blood flow models using experimental data. , 2017, International journal for numerical methods in biomedical engineering.

[60]  Thomas A. Zang,et al.  Stochastic approaches to uncertainty quantification in CFD simulations , 2005, Numerical Algorithms.

[61]  Eleuterio F. Toro,et al.  Flow in Collapsible Tubes with Discontinuous Mechanical Properties: Mathematical Model and Exact Solutions , 2013 .

[62]  Eleuterio F. Toro,et al.  Solvers for the high-order Riemann problem for hyperbolic balance laws , 2008, J. Comput. Phys..

[63]  S. Sherwin,et al.  Lumped parameter outflow models for 1-D blood flow simulations: Effect on pulse waves and parameter estimation , 2008 .

[64]  Dongbin Xiu,et al.  The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..

[65]  Alfio Quarteroni,et al.  Cardiovascular mathematics : modeling and simulation of the circulatory system , 2009 .

[66]  Hester Bijl,et al.  Uncertainty Quantification in Computational Fluid Dynamics , 2013, Lecture Notes in Computational Science and Engineering.

[67]  Xiu Yang,et al.  Adaptive ANOVA decomposition of stochastic incompressible and compressible flows , 2012, J. Comput. Phys..

[68]  Marcel C M Rutten,et al.  Experimental validation of a time-domain-based wave propagation model of blood flow in viscoelastic vessels. , 2008, Journal of biomechanics.

[69]  Thomas Y. Hou,et al.  A dynamically bi-orthogonal method for time-dependent stochastic partial differential equations II: Adaptivity and generalizations , 2013, J. Comput. Phys..

[70]  Robert W. Walters,et al.  Uncertainty analysis for fluid mechanics with applications , 2002 .

[71]  M. Lemaire,et al.  Stochastic finite element: a non intrusive approach by regression , 2006 .

[72]  Shi Jin,et al.  A Well-Balanced Stochastic Galerkin Method for Scalar Hyperbolic Balance Laws with Random Inputs , 2016, J. Sci. Comput..

[73]  R. Ghanem,et al.  A stochastic projection method for fluid flow. I: basic formulation , 2001 .

[74]  Michael Dumbser,et al.  Efficient, high accuracy ADER-WENO schemes for hydrodynamics and divergence-free magnetohydrodynamics , 2008, Journal of Computational Physics.