Capillary spreading of a droplet in the partially wetting regime using a diffuse-interface model

The spreading of a liquid droplet on a smooth solid surface in the partially wetting regime is studied using a diffuse-interface model based on the Cahn--Hilliard theory. The model is extended to include non-90$^{\circ}$ contact angles. The diffuse-interface model considers the ambient fluid displaced by the droplet while spreading as a liquid. The governing equations of the model for the axisymmetric case are solved numerically using a finite-spectral-element method. The viscosity of the ambient fluid is found to affect the time scale of spreading, but the general spreading behaviour remains unchanged. The wettability expressed in terms of the equilibrium contact angle is seen to influence the spreading kinetics from the early stages of spreading. The results show agreement with the experimental data reported in the literature.

[1]  Timothy Nigel Phillips,et al.  Spectral element methods for axisymmetric Stokes problems , 2000 .

[2]  P. Durbin Considerations on the moving contact-line singularity, with application to frictional drag on a slender drop , 1988, Journal of Fluid Mechanics.

[3]  Patrick Amestoy,et al.  Vectorization of a Multiprocessor Multifrontal Code , 1989, Int. J. High Perform. Comput. Appl..

[4]  S. H. Davis,et al.  On the motion of a fluid-fluid interface along a solid surface , 1974, Journal of Fluid Mechanics.

[5]  D. M. Anderson,et al.  DIFFUSE-INTERFACE METHODS IN FLUID MECHANICS , 1997 .

[6]  Ivan B. Bazhlekov,et al.  Non-singular boundary-integral method for deformable drops in viscous flows , 2003 .

[7]  M. Slemrod,et al.  DYNAMICS OF FIRST ORDER PHASE TRANSITIONS , 1984 .

[8]  Jonathan Goodman,et al.  Modeling pinchoff and reconnection in a Hele-Shaw cell. II. Analysis and simulation in the nonlinear regime , 2002 .

[9]  Patrick Patrick Anderson,et al.  Diffuse interface modeling of the morphology and rheology of immiscible polymer blends , 2003 .

[10]  Patrick Amestoy,et al.  Memory Management Issues in Sparse Multifrontal Methods On Multiprocessors , 1993, Int. J. High Perform. Comput. Appl..

[11]  Y. Shikhmurzaev A two-layer model of an interface between immiscible fluids , 1993 .

[12]  John S. Rowlinson,et al.  Molecular Theory of Capillarity , 1983 .

[13]  David Jasnow,et al.  Coarse‐grained description of thermo‐capillary flow , 1996, patt-sol/9601004.

[14]  M Maykel Verschueren,et al.  A diffuse-interface model for structure development in flow , 1999 .

[15]  Lydéric Bocquet,et al.  Large Slip Effect at a Nonwetting Fluid-Solid Interface , 1999 .

[16]  Patrick Amestoy,et al.  An Unsymmetrized Multifrontal LU Factorization , 2000, SIAM J. Matrix Anal. Appl..

[17]  Y. Shikhmurzaev Mathematical modeling of wetting hydrodynamics , 1994 .

[18]  Y. Shikhmurzaev Moving contact lines in liquid/liquid/solid systems , 1997, Journal of Fluid Mechanics.

[19]  Pierre Seppecher,et al.  Moving contact lines in the Cahn-Hilliard theory , 1996 .

[20]  France.,et al.  Droplet Spreading: Partial Wetting Regime Revisited , 1998, cond-mat/9810040.

[21]  R. Chella,et al.  Mixing of a two-phase fluid by cavity flow. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[22]  L. Scriven,et al.  Hydrodynamic Model of Steady Movement of a Solid / Liquid / Fluid Contact Line , 1971 .

[23]  D. Jacqmin Regular Article: Calculation of Two-Phase Navier–Stokes Flows Using Phase-Field Modeling , 1999 .

[24]  Joel Koplik,et al.  Molecular dynamics of fluid flow at solid surfaces , 1989 .

[25]  J. Waals The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density , 1979 .

[26]  J. Goodman,et al.  Modeling pinchoff and reconnection in a Hele-Shaw cell. I. The models and their calibration , 2002 .

[27]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .

[28]  Robbins,et al.  Simulations of contact-line motion: Slip and the dynamic contact angle. , 1989, Physical review letters.

[29]  O. Voinov Hydrodynamics of wetting , 1976 .

[30]  Yulii D. Shikhmurzaev,et al.  Spreading of drops on solid surfaces in a quasi-static regime , 1997 .

[31]  E. B. Dussan,et al.  LIQUIDS ON SOLID SURFACES: STATIC AND DYNAMIC CONTACT LINES , 1979 .

[32]  P. Gennes,et al.  Dynamics of wetting: local contact angles , 1990, Journal of Fluid Mechanics.

[33]  James J. Feng,et al.  A diffuse-interface method for simulating two-phase flows of complex fluids , 2004, Journal of Fluid Mechanics.

[34]  Daniel D. Joseph,et al.  Fundamentals of two-fluid dynamics , 1993 .

[35]  J. Yeomans,et al.  Lattice Boltzmann simulations of contact line motion. II. Binary fluids. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[36]  R. T. Foister The kinetics of displacement wetting in liquid/liquid/solid systems , 1990 .

[37]  L. M. Hocking A moving fluid interface. Part 2. The removal of the force singularity by a slip flow , 1977, Journal of Fluid Mechanics.

[38]  John W. Cahn,et al.  Phase Separation by Spinodal Decomposition in Isotropic Systems , 1965 .

[39]  Chen,et al.  Interface and contact line motion in a two phase fluid under shear flow , 2000, Physical review letters.

[40]  van de Fn Frans Vosse,et al.  Diffuse-interface modelling of thermocapillary flow instabilities in a Hele-Shaw cell , 2001, Journal of Fluid Mechanics.

[41]  Franklin T. Dodge,et al.  The spreading of liquid droplets on solid surfaces , 1988 .

[42]  S. Herminghaus,et al.  Wetting: Statics and dynamics , 1997 .

[43]  A. Zosel,et al.  Studies of the wetting kinetics of liquid drops on solid surfaces , 1993 .

[44]  David Jacqmin,et al.  Contact-line dynamics of a diffuse fluid interface , 2000, Journal of Fluid Mechanics.

[45]  Jean-Pierre Vilotte,et al.  Application of the spectral‐element method to the axisymmetric Navier–Stokes equation , 2004 .

[46]  A. Wagner,et al.  Lattice Boltzmann simulations of contact line motion. I. Liquid-gas systems. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[47]  Banavar,et al.  Molecular dynamics of Poiseuille flow and moving contact lines. , 1988, Physical review letters.

[48]  Yulii D. Shikhmurzaev,et al.  The moving contact line on a smooth solid surface , 1993 .

[49]  E. Bruce Nauman,et al.  Nonlinear diffusion and phase separation , 2001 .

[50]  John W. Cahn,et al.  Critical point wetting , 1977 .

[51]  Robbins,et al.  Shear flow near solids: Epitaxial order and flow boundary conditions. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[52]  V. I. Bykov,et al.  Dynamics of first-order phase transitions , 2009 .

[53]  A. Marmur Equilibrium and spreading of liquids on solid surfaces , 1983 .

[54]  D. Winfield,et al.  Optimization: Theory and practice , 1972 .

[55]  Marek Cieplak,et al.  Christodoulides, Demetrios N. , 2001 .

[56]  L. Scriven,et al.  Stress and Structure in Fluid Interfaces , 2007 .

[57]  Joël De Coninck,et al.  Experimental Evidence of Several Time Scales in Drop Spreading , 2000 .

[58]  J R Banavar,et al.  Boundary conditions at a fluid-solid interface. , 2001, Physical review letters.

[59]  J. Lowengrub,et al.  Quasi–incompressible Cahn–Hilliard fluids and topological transitions , 1998, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.