An algebraic spline model of molecular surfaces

In this paper, we describe a new method to generate a smooth algebraic spline (AS) model approximation of the molecular surface (MS), based on an initial coarse triangulation derived from the atomic coordinate information of the biomolecule, resident in the PDB (Protein data bank). Our method first constructs a triangular prism scaffold Ps covering the PDB structure, and then generates piecewise polynomial Bernstein-Bezier (BB) spline function approximation F within Ps, which are nearly C1 everywhere. Approximation error and point sampling convergence bounds are also computed. An implicit AS model of the MS which is free of singularity, is extracted as the zero contours of F. Furthermore, we generate a polynomial parametrization of the implicit MS, which allows for an efficient point sampling on the MS, and thereby simplifies the accurate estimation of integrals needed for electrostatic solvation energy calculations.

[1]  L. R. Scott,et al.  Electrostatics and diffusion of molecules in solution: simulations with the University of Houston Brownian dynamics program , 1995 .

[2]  R. Friesner,et al.  Generalized Born Model Based on a Surface Integral Formulation , 1998 .

[3]  B. Roux,et al.  Implicit solvent models. , 1999, Biophysical chemistry.

[4]  Chandrajit L. Bajaj,et al.  An Adaptive Grid Based Method for Computing Molecular Surfaces and Properties , 2006 .

[5]  Peter A. Kollman,et al.  A Ligand That Is Predicted to Bind Better to Avidin than Biotin: Insights from Computational Fluorine Scanning , 2000 .

[6]  Wolfgang Dahmen,et al.  Cubicoids: modeling and visualization , 1993, Comput. Aided Geom. Des..

[7]  Chandrajit L. Bajaj,et al.  Quality meshing of implicit solvation models of biomolecular structures , 2006, Comput. Aided Geom. Des..

[8]  G. Nielson The side-vertex method for interpolation in triangles☆ , 1979 .

[9]  Ho-Lun Cheng,et al.  Quality mesh generation for molecular skin surfaces using restricted union of balls , 2009, Comput. Geom..

[10]  D. A. Dunavant High degree efficient symmetrical Gaussian quadrature rules for the triangle , 1985 .

[11]  M. L. Connolly Analytical molecular surface calculation , 1983 .

[12]  J. A. Grant,et al.  A Gaussian Description of Molecular Shape , 1995 .

[13]  Charles L. Brooks,et al.  Generalized born model with a simple smoothing function , 2003, J. Comput. Chem..

[14]  Herbert Edelsbrunner,et al.  Triangulating the Surface of a Molecule , 1996, Discret. Appl. Math..

[15]  Michael J. Holst,et al.  Adaptive multilevel finite element solution of the Poisson-Boltzmann equation II. Refinement at solvent-accessible surfaces in biomolecular systems , 2000, J. Comput. Chem..

[16]  Robert J. Holt,et al.  Hierarchical multiresolution reconstruction of shell surfaces , 2002, Comput. Aided Geom. Des..

[17]  M. Karplus,et al.  A Comprehensive Analytical Treatment of Continuum Electrostatics , 1996 .

[18]  Vinay Siddavanahalli,et al.  Fast Error-bounded Surfaces and Derivatives Computation for Volumetric Particle Data , 2005 .

[19]  Ho-Lun Cheng,et al.  Guaranteed quality triangulation of molecular skin surfaces , 2004, IEEE Visualization 2004.

[20]  B. Lee,et al.  The interpretation of protein structures: estimation of static accessibility. , 1971, Journal of molecular biology.

[21]  Houman Borouchaki,et al.  Molecular Surface Modeling and Meshing , 2002, Engineering with Computers.

[22]  P. Kollman,et al.  Continuum Solvent Studies of the Stability of DNA, RNA, and Phosphoramidate−DNA Helices , 1998 .

[23]  Herbert Edelsbrunner,et al.  Deformable Smooth Surface Design , 1999, Discret. Comput. Geom..

[24]  W. C. Still,et al.  Semianalytical treatment of solvation for molecular mechanics and dynamics , 1990 .

[25]  C. Brooks,et al.  Novel generalized Born methods , 2002 .

[26]  J. Berg,et al.  Molecular dynamics simulations of biomolecules , 2002, Nature Structural Biology.

[27]  D. Case,et al.  Generalized Born Models of Macromolecular Solvation Effects , 2001 .

[28]  Vinay Siddavanahalli,et al.  Compressed representations of macromolecular structures and properties. , 2005, Structure.

[29]  Jindong Chen,et al.  Modeling with cubic A-patches , 1995, TOGS.

[30]  D. Beglov,et al.  Atomic Radii for Continuum Electrostatics Calculations Based on Molecular Dynamics Free Energy Simulations , 1997 .

[31]  Baining Guo,et al.  Modeling arbitrary smooth objects with algebraic surfaces , 1992 .

[32]  Valerio Pascucci,et al.  NURBS based B-rep models for macromolecules and their properties , 1997, SMA '97.

[33]  Wolfgang Dahmen,et al.  Smooth piecewise quadric surfaces , 1989 .

[34]  Chandrajit L. Bajaj,et al.  TexMol: interactive visual exploration of large flexible multi-component molecular complexes , 2004, IEEE Visualization 2004.

[35]  Charles L. Brooks,et al.  New analytic approximation to the standard molecular volume definition and its application to generalized Born calculations , 2003, J. Comput. Chem..

[36]  F M Richards,et al.  Areas, volumes, packing and protein structure. , 1977, Annual review of biophysics and bioengineering.