AMPA receptors as a molecular target in epilepsy therapy

Epileptic seizures occur as a result of episodic abnormal synchronous discharges in cerebral neuronal networks. Although a variety of non‐conventional mechanisms may play a role in epileptic synchronization, cascading excitation within networks of synaptically connected excitatory glutamatergic neurons is a classical mechanism. As is the case throughout the central nervous system, fast synaptic excitation within and between brain regions relevant to epilepsy is mediated predominantly by AMPA receptors. By inhibiting glutamate‐mediated excitation, AMPA receptor antagonists markedly reduce or abolish epileptiform activity in in vitro preparations and confer seizure protection in a broad range of animal seizure models. NMDA receptors may also contribute to epileptiform activity, but NMDA receptor blockade is not sufficient to eliminate epileptiform discharges. AMPA receptors move into and out of the synapse in a dynamic fashion in forms of synaptic plasticity, underlying learning and memory. Often, the trigger for these dynamic movements is the activation of NMDA receptors. While NMDA receptor antagonists inhibit these forms of synaptic plasticity, AMPA receptor antagonists do not impair synaptic plasticity and do not inhibit memory formation or retrieval. The demonstrated clinical efficacy of perampanel, a high‐potency, orally active non‐competitive AMPA receptor antagonist, supports the concept that AMPA receptors are critical to epileptic synchronization and the generation and spread of epileptic discharges in human epilepsy.

[1]  T. Honoré,et al.  New quinoxalinediones show potent antagonism of quisqualate responses in cultured mouse cortical neurons , 1988, Neuroscience Letters.

[2]  D. Goldstein,et al.  Common variation in the SCN1A gene is a risk factor for common forms of epilepsy associated with febrile seizures , 2004 .

[3]  S. Grasso,et al.  Mechanism of inhibition of GluA2 AMPA receptor channel opening by 2,3-benzodiazepine derivatives: functional consequences of replacing a 7,8-methylenedioxy with a 7,8-ethylenedioxy moiety. , 2012, Biochemistry.

[4]  R. Huganir,et al.  Regulation of AMPA receptor trafficking and synaptic plasticity , 2012, Current Opinion in Neurobiology.

[5]  R. Nicoll,et al.  Subunit Composition of Synaptic AMPA Receptors Revealed by a Single-Cell Genetic Approach , 2009, Neuron.

[6]  J. Kemp,et al.  Ionotropic and metabotropic glutamate receptor structure and pharmacology , 2005, Psychopharmacology.

[7]  H. Yamashita,et al.  Effect of YM928, a novel AMPA receptor antagonist, on seizures in EL mice and kainate-induced seizures in rats , 2004, Naunyn-Schmiedeberg's Archives of Pharmacology.

[8]  M. Craggs,et al.  The effect of the non-NMDA receptor antagonists GYKI 52466 and NBQX and the competitive NMDA receptor antagonist d-CPPene on the development of amygdala kindling and on amygdala-kindled seizures , 1994, Epilepsy Research.

[9]  R. Miles,et al.  Excitatory synaptic interactions between CA3 neurones in the guinea‐pig hippocampus. , 1986, The Journal of physiology.

[10]  L. Hársing,et al.  New non competitive AMPA antagonists. , 2000, Bioorganic & medicinal chemistry.

[11]  F. Menniti,et al.  Molecular Mechanism of AMPA Receptor Noncompetitive Antagonism , 2005, Neuron.

[12]  David A. Carcache,et al.  alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) antagonists: from bench to bedside. , 2010, Journal of medicinal chemistry.

[13]  B. Chenard Atropisomeric Quinazolin-4-one Derivatives Are Potent Noncompetitive α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid (AMPA) Receptor Antagonists. , 2001 .

[14]  R. Nicoll,et al.  The Expanding Social Network of Ionotropic Glutamate Receptors: TARPs and Other Transmembrane Auxiliary Subunits , 2011, Neuron.

[15]  E. Nielsen,et al.  2,3-Dihydroxy-6-nitro-7-sulfamoyl-benzo(F)quinoxaline: a neuroprotectant for cerebral ischemia. , 1990, Science.

[16]  S. Kuroda,et al.  Effect of YM872, a selective and highly water-soluble AMPA receptor antagonist, in the rat kindling and rekindling model of epilepsy. , 2006, European journal of pharmacology.

[17]  M. Rogawski,et al.  AMPA receptors in epilepsy and as targets for antiepileptic drugs. , 1999, Advances in neurology.

[18]  I. Tarnawa,et al.  Non-competitive AMPA antagonists of 2,3-benzodiazepine type. , 2002, Current pharmaceutical design.

[19]  M. Rogawski,et al.  Anticonvulsant activity of AMPA/kainate antagonists: comparison of GYKI 52466 and NBQX in maximal electroshock and chemoconvulsant seizure models , 1993, Epilepsy Research.

[20]  I. Tarnawa,et al.  AMPA receptor antagonists, GYKI 52466 and NBQX, do not block the induction of long-term potentiation at therapeutically relevant concentrations , 2000, Brain Research Bulletin.

[21]  M. Avoli,et al.  Bicuculline-induced epileptogenesis in the human neocortex maintained in vitro , 2004, Experimental Brain Research.

[22]  S. Mignani,et al.  9-Carboxymethyl-5H,10H-imidazo[1,2-a]indeno[1,2-e]pyrazin-4-one-2-carbocylic acid (RPR117824): selective anticonvulsive and neuroprotective AMPA antagonist. , 2002, Bioorganic & medicinal chemistry.

[23]  M. Avoli,et al.  The involvement of excitatory amino acids in neocortical epileptogenesis: NMDA and non-NMDA receptors , 2004, Experimental Brain Research.

[24]  J. Jefferys,et al.  Low‐calcium field burst discharges of CA1 pyramidal neurones in rat hippocampal slices. , 1984, The Journal of physiology.

[25]  C. McBain,et al.  The kainate/quisqualate receptor antagonist, CNQX, blocks the fast component of spontaneous epileptiform activity in organotypic cultures of rat hippocampus , 1988, Neuroscience Letters.

[26]  V. Teichberg,et al.  A Venus Flytrap Mechanism for Activation and Desensitization of α-Amino-3-hydroxy-5-methyl-4-isoxazole Propionic Acid Receptors* , 1996, The Journal of Biological Chemistry.

[27]  A. Ganong,et al.  Atropisomeric quinazolin-4-one derivatives are potent noncompetitive alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor antagonists. , 2001, Bioorganic & medicinal chemistry letters.

[28]  N. Pitsikas,et al.  The non-NMDA receptor antagonist NBQX does not affect rats performance in the object recognition task. , 2002, Pharmacological research.

[29]  P. Ornstein,et al.  (3SR,4aRS,6RS,8aRS)-6-[2-(1H-tetrazol-5-yl)ethyl]decahydroisoquinoline-3 - carboxylic acid: a structurally novel, systemically active, competitive AMPA receptor antagonist. , 1993, Journal of medicinal chemistry.

[30]  S. Usuda,et al.  YM90K: pharmacological characterization as a selective and potent alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate/kainate receptor antagonist. , 1996, The Journal of pharmacology and experimental therapeutics.

[31]  B. Meldrum,et al.  The anticonvulsant effect of the non-NMDA antagonists, NBQX and GYKI 52466, in mice , 1991, Epilepsy Research.

[32]  Y. Auberson,et al.  Quinazolinedione sulfonamides: a novel class of competitive AMPA receptor antagonists with oral activity. , 2011, Bioorganic & medicinal chemistry letters.

[33]  M. Avoli,et al.  Jasper's basic mechanisms of the epilepsies , 2012 .

[34]  V. Stein,et al.  Stargazin modulates AMPA receptor antagonism , 2008, Neuropharmacology.

[35]  P. England,et al.  AMPA receptors and synaptic plasticity: a chemist's perspective. , 2010, Nature chemical biology.

[36]  Congzhou Wang,et al.  Mechanism of Inhibition of the GluA2 AMPA Receptor Channel Opening: the Role of 4-Methyl versus 4-Carbonyl Group on the Diazepine Ring of 2,3-Benzodiazepine Derivatives. , 2011, ACS chemical neuroscience.

[37]  W. Turski,et al.  NBQX does not affect learning and memory tasks in mice: a comparison with D-CPPene and ifenprodil. , 1992, Brain research. Cognitive brain research.

[38]  K. Krampfl,et al.  Molecular analysis of the interaction of the pyrazine derivatives RPR119990 and RPR117824 with human AMPA-type glutamate receptor channels , 2006, Neuropharmacology.

[39]  F. Menniti,et al.  Characterization of the binding site for a novel class of noncompetitive alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor antagonists. , 2000, Molecular pharmacology.

[40]  Terrence J. Sejnowski,et al.  Neuronal Synchronization and Thalamocortical Rhythms in Sleep, Wake and Epilepsy , 2012 .

[41]  R. Miles,et al.  Single neurones can initiate synchronized population discharge in the hippocampus , 1983, Nature.

[42]  D. Bredt,et al.  TARPs differentially decorate AMPA receptors to specify neuropharmacology , 2010, Trends in Neurosciences.

[43]  S. Urwyler,et al.  6-Amino quinazolinedione sulfonamides as orally active competitive AMPA receptor antagonists. , 2012, Bioorganic & medicinal chemistry letters.

[44]  Chris J. McBain,et al.  The Role of the GluR2 Subunit in AMPA Receptor Function and Synaptic Plasticity , 2007, Neuron.

[45]  R. Malenka,et al.  Synaptic Plasticity: Multiple Forms, Functions, and Mechanisms , 2008, Neuropsychopharmacology.

[46]  M. Rogawski,et al.  Evidence for low GluR2 AMPA receptor subunit expression at synapses in the rat basolateral amygdala , 2005, Journal of neurochemistry.

[47]  H. Jasper,et al.  Basic Mechanisms of the Epilepsies , 1971, Journal of the Royal College of Physicians of London.

[48]  M. Rogawski,et al.  Preclinical pharmacology of perampanel, a selective non‐competitive AMPA receptor antagonist , 2013, Acta neurologica Scandinavica. Supplementum.

[49]  M. Rogawski,et al.  GYKI 52466, a 2,3-benzodiazepine, is a highly selective, noncompetitive antagonist of AMPA/kainate receptor responses , 1993, Neuron.

[50]  R. Neuman,et al.  Antagonism of spontaneous and evoked bursts by 6-cyano-7-nitroquinoxaline-2, 3-dione (CNQX) in the CA3 region of the in vitro hippocampus , 1988, Brain Research.

[51]  Zhengping Jia,et al.  Ca2+ Permeable AMPA Receptor Induced Long-Term Potentiation Requires PI3/MAP Kinases but Not Ca/CaM-Dependent Kinase II , 2009, PloS one.

[52]  H. Yamashita,et al.  Functional Characterization of YM928, a Novel Noncompetitive α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid (AMPA) Receptor Antagonist , 2003, Journal of Pharmacology and Experimental Therapeutics.

[53]  Antonio V. Delgado-Escueta,et al.  Neuronal Synchronization and Thalamocortical Rhythms in Sleep, Wake and Epilepsy -- Jasper's Basic Mechanisms of the Epilepsies , 2012 .

[54]  R. Traub,et al.  Cellular mechanism of neuronal synchronization in epilepsy. , 1982, Science.

[55]  Wolfgang Löscher,et al.  The neurobiology of antiepileptic drugs , 2004, Nature Reviews Neuroscience.

[56]  M. Avoli,et al.  Limbic Network Synchronization and Temporal Lobe Epilepsy -- Jasper's Basic Mechanisms of the Epilepsies , 2012 .

[57]  T. Soderling,et al.  Regulatory mechanisms of AMPA receptors in synaptic plasticity , 2007, Nature Reviews Neuroscience.

[58]  R. S. Jones,et al.  Synchronous discharges in the rat entorhinal cortex in vitro: Site of initiation and the role of excitatory amino acid receptors , 1990, Neuroscience.

[59]  G. Collingridge,et al.  Removal of AMPA Receptors (AMPARs) from Synapses Is Preceded by Transient Endocytosis of Extrasynaptic AMPARs , 2004, The Journal of Neuroscience.

[60]  Y. Kitamura,et al.  Effects of YM90K, a selective AMPA receptor antagonist, on amygdala-kindling and long-term hippocampal potentiation in the rat. , 1999, European journal of pharmacology.

[61]  G. Krauss,et al.  Adjunctive perampanel for refractory partial-onset seizures , 2012, Neurology.

[62]  M. Vartanian,et al.  Probenecid pretreatment enhances anticonvulsant action of NBQX in mice. , 1992, European journal of pharmacology.

[63]  U. Dirnagl,et al.  ZK200775: a phosphonate quinoxalinedione AMPA antagonist for neuroprotection in stroke and trauma. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[64]  W. Turski,et al.  Excitatory amino acid antagonists and memory: Effect of drugs acting at N-methyl-d-aspartate receptors in learning and memory tasks , 1990, Neuropharmacology.

[65]  R. Traub,et al.  Electrophysiological substrates for focal epilepsies. , 1998, Progress in brain research.

[66]  E. Gouaux,et al.  Mechanisms for Activation and Antagonism of an AMPA-Sensitive Glutamate Receptor Crystal Structures of the GluR2 Ligand Binding Core , 2000, Neuron.

[67]  R. Zukin,et al.  Ca2+-permeable AMPA receptors in synaptic plasticity and neuronal death , 2007, Trends in Neurosciences.

[68]  D. Catarzi,et al.  Competitive AMPA receptor antagonists , 2007, Medicinal research reviews.

[69]  C. Taylor How do seizures begin? Clues from hippocampal slices , 1988, Trends in Neurosciences.

[70]  John G. R. Jefferys,et al.  Limbic Network Synchronization and Temporal Lobe Epilepsy , 2012 .

[71]  J. Hablitz,et al.  Involvement of non-NMDA receptors in picrotoxin-induced epileptiform activity in the hippocampus , 1989, Neuroscience Letters.

[72]  C. Mathiesen,et al.  SPD 502: a water-soluble and in vivo long-lasting AMPA antagonist with neuroprotective activity. , 1999, The Journal of pharmacology and experimental therapeutics.

[73]  K. Jellinger Ionotropic Glutamate Receptors as Therapeutic Targets , 2004 .

[74]  Robert M Stroud,et al.  TARP Auxiliary Subunits Switch AMPA Receptor Antagonists into Partial Agonists , 2007, Science.

[75]  C. Mathiesen,et al.  Effect of novel AMPA antagonist, NS1209, on status epilepticus An experimental study in rat , 2007, Epilepsy Research.

[76]  G. Collingridge,et al.  Excitatory amino acid receptors in the vertebrate central nervous system. , 1989, Pharmacological reviews.

[77]  S N Davies,et al.  Quinoxalinediones: potent competitive non-NMDA glutamate receptor antagonists. , 1988, Science.

[78]  J. Shepherd Memory, plasticity and sleep - A role for calcium permeable AMPA receptors? , 2012, Front. Mol. Neurosci..

[79]  B. Steinhoff,et al.  Evaluation of adjunctive perampanel in patients with refractory partial‐onset seizures: Results of randomized global phase III study 305 , 2013, Epilepsia.

[80]  R K Wong,et al.  Inhibitory control of local excitatory circuits in the guinea‐pig hippocampus. , 1987, The Journal of physiology.

[81]  J. Meador-Woodruff,et al.  Expression of transcripts encoding AMPA receptor subunits and associated postsynaptic proteins in the macaque brain , 2004, The Journal of comparative neurology.

[82]  René H. Levy,et al.  Progress report on new antiepileptic drugs: A summary of the Eigth Eilat Conference (EILAT VIII) , 2007, Epilepsy Research.

[83]  R. Traub,et al.  Synaptic and intrinsic conductances shape picrotoxin‐induced synchronized after‐discharges in the guinea‐pig hippocampal slice. , 1993, The Journal of physiology.

[84]  A. Kohara,et al.  YM872: a selective, potent and highly water-soluble alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor antagonist. , 2006, CNS drug reviews.

[85]  N. Dürmüller,et al.  The non-N-methyl-D-aspartate receptor antagonists, GYKI 52466 and NBQX are anticonvulsant in two animal models of reflex epilepsy. , 1991, European journal of pharmacology.

[86]  Antiepileptogenic and anticonvulsant effects of NBQX, a selective AMPA receptor antagonist, in the rat kindling model of epilepsy , 1994, Brain Research.

[87]  P. Ornstein,et al.  In vitro and in vivo antagonism of AMPA receptor activation by (3s,4ar,6r,8ar)-6-[2-(1(2)h-tetrazole-5-yl)ethyl]decahydroisoquinoline-3-carboxylic acid , 1995, Neuropharmacology.