A generalized Davydov soliton model for energy transfer in alpha helical proteins

We propose a generalized Davydov model with higher order molecular interactions and excitations of dipole and quadrupole types with appropriate nonlinear coupling with phonons and study the underlying nonlinear molecular coherent excitations under continuum approximation in terms of solitons to represent energy transfer along the hydrogen bonding spines of the alpha helical proteins. We have identified six specific models at different orders of continuum approximation for particular choice of parameters under this new generalized model that support energy transfer in the form of solitons. In the general case, we have constructed the perturbed soliton and the perturbation analysis shows that the velocity and amplitude of the soliton do not change.

[1]  M. Tabor,et al.  The Painlevé property for partial differential equations , 1983 .

[2]  Eshel Ben-Jacob,et al.  Conformation changes and folding of proteins mediated by Davydov's soliton , 1999, cond-mat/9911004.

[3]  Junkichi Satsuma,et al.  New-Type of Soliton Solutions for a Higher-Order Nonlinear Schrödinger Equation , 1991 .

[4]  Susumu Takeda,et al.  Modified Nonlinear Schrödinger Equation for Alfvén Waves Propagating along the Magnetic Field in Cold Plasmas , 1975 .

[5]  M. M. Latha,et al.  Soliton in discrete and continuum alpha helical proteins with interspine coupling , 1999 .

[6]  Peter S. Lomdahl,et al.  Soliton structure in crystalline acetanilide , 1984 .

[7]  Alwyn C. Scott,et al.  Launching a Davydov Soliton: I. Soliton Analysis , 1984 .

[8]  Shan-liang Liu,et al.  Energy spectrum and coupling intensity between three helical chains in α-helical protein molecules , 1997 .

[9]  R. Hirota Exact envelope‐soliton solutions of a nonlinear wave equation , 1973 .

[10]  M. Lakshmanan,et al.  On the integrability aspects of the one-dimensional classical continuum isotropic biquadratic Heisenberg spin chain , 1992 .

[11]  Y. Ishimori On the Modified Korteweg-de Vries Soliton and the Loop Soliton , 1981 .

[12]  A. Davydov,et al.  Solitons in molecular systems , 1979 .

[13]  M. M. Latha,et al.  Soliton in discrete and continuum alpha helical proteins with higher-order excitations , 1997 .

[14]  N. Papanicolaou Inverse method for a generalized spin chain , 1979 .

[15]  Yuji Kodama,et al.  Perturbations of solitons and solitary waves , 1981 .

[16]  V. Zakharov,et al.  Equivalence of the nonlinear Schrödinger equation and the equation of a Heisenberg ferromagnet , 1979 .

[17]  N. Nevskaya,et al.  Infrared spectra and resonance interactions of amide‐I and II vibrations of α‐helix , 1976 .

[18]  Schweitzer Lifetime of the Davydov soliton. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[19]  L. Pauling,et al.  The Structure of Protein Molecules , 1954 .

[20]  K. Deepamala,et al.  Davydov soliton in alpha helical proteins: higher order and discreteness effects , 1995 .

[21]  Kimiaki Konno,et al.  New Integrable Nonlinear Evolution Equations , 1979 .

[22]  M. Wadati A Remarkable Transformation in Nonlinear Lattice Problem , 1976 .

[23]  Anjan Kundu,et al.  Landau-Lifshitz and higher-order nonlinear systems gauge generated from nonlinear Schrödinger-type equations , 1984 .

[24]  A. Mikhailov,et al.  Integrable deformations of the Heisenberg model , 1986 .

[25]  A. Davydov,et al.  Solitary excitons in one‐dimensional molecular chains , 1973 .

[26]  K. M. Tamizhmani,et al.  Geometrical equivalence of a deformed Heisenberg spin equation and the generalized nonlinear Schrödinger equation , 1987 .

[27]  L. Cruzeiro-Hansson Effect of long range and anharmonicity in the minimum energy states of the Davydov-Scott model , 1998 .

[28]  Michel Peyrard,et al.  Nonlinear Excitations in Biomolecules , 1995 .

[29]  M. Ablowitz,et al.  Solitons, Nonlinear Evolution Equations and Inverse Scattering , 1992 .

[30]  W. Forner Quantum and temperature effects on Davydov soliton dynamics. III. Interchain coupling , 1993 .

[31]  M. Lakshmanan,et al.  Continuum spin system as an exactly solvable dynamical system , 1977 .