Stability and convergence of trigonometric integrator pseudospectral discretization for N-coupled nonlinear Klein-Gordon equations
暂无分享,去创建一个
[1] W. Gautschi. Numerical integration of ordinary differential equations based on trigonometric polynomials , 1961 .
[2] D. Gottlieb,et al. Numerical analysis of spectral methods : theory and applications , 1977 .
[3] K. Porsezian,et al. Painlevé analysis and complete integrability of coupled Klein-Gordon equations , 1995 .
[4] Xuanchun Dong,et al. A trigonometric integrator pseudospectral discretization for the N-coupled nonlinear Klein–Gordon equations , 2012, Numerical Algorithms.
[5] Weiming Cao,et al. Fourier Collocation Method for Solving Nonlinear Klein-Gordon Equation , 1993 .
[6] K. Nakkeeran,et al. Painlevé Analysis of $N$-Coupled Nonlinear Klein–Gordon Equations , 2003 .
[7] M. Ablowitz,et al. Solitons, Nonlinear Evolution Equations and Inverse Scattering , 1992 .
[8] P. Deuflhard. A study of extrapolation methods based on multistep schemes without parasitic solutions , 1979 .
[9] Volker Grimm,et al. On error bounds for the Gautschi-type exponential integrator applied to oscillatory second-order differential equations , 2005, Numerische Mathematik.
[10] Jan S. Hesthaven,et al. Spectral Methods for Time-Dependent Problems: Contents , 2007 .
[11] Marlis Hochbruck,et al. A Gautschi-type method for oscillatory second-order differential equations , 1999, Numerische Mathematik.
[12] Elias Deeba,et al. A Decomposition Method for Solving the Nonlinear Klein-Gordon Equation , 1996 .
[13] Jie Shen,et al. Spectral and High-Order Methods with Applications , 2006 .
[14] Jie Shen,et al. Spectral Methods: Algorithms, Analysis and Applications , 2011 .
[15] D. B. Duncan,et al. Sympletic Finite Difference Approximations of the Nonlinear Klein--Gordon Equation , 1997 .
[16] Bengt Fornberg,et al. A practical guide to pseudospectral methods: Introduction , 1996 .
[17] L. Vázquez,et al. Numerical simulations of a nonlinear Klein-Gordon model. Applications , 1995 .
[18] Ryogo Hirota,et al. Direct method of finding exact solutions of nonlinear evolution equations , 1976 .
[19] R. Hirota,et al. Hierarchies of Coupled Soliton Equations. I , 1991 .
[20] Volker Grimm,et al. A note on the Gautschi-type method for oscillatory second-order differential equations , 2005, Numerische Mathematik.
[21] Volker Grimm,et al. On the Use of the Gautschi-Type Exponential Integrator for Wave Equations , 2006 .
[22] Weizhu Bao,et al. Analysis and comparison of numerical methods for the Klein–Gordon equation in the nonrelativistic limit regime , 2011, Numerische Mathematik.
[23] L. Vu-Quoc,et al. Finite difference calculus invariant structure of a class of algorithms for the nonlinear Klein-Gordon equation , 1995 .
[24] L. Vu-Quoc,et al. INVARIANT-CONSERVING FINITE DIFFERENCE ALGORITHMS FOR THE NONLINEAR KLEIN-GORDON EQUATION , 1993 .
[25] K. Nakkeeran,et al. Soliton solutions of coupled nonlinear Klein-Gordon equations , 2003 .