Estimating tree bole volume using artificial neural network models for four species in Turkey.

[1]  G. B. Wood,et al.  Estimating the volume of Australian hardwoods using centroid sampling , 1990 .

[2]  Lichun Jiang,et al.  Compatible stem volume and taper equations for Brutian pine, Cedar of Lebanon, and Cilicica fir in Turkey , 2008 .

[3]  R. Özçelik Comparison of formulae for estimating tree bole volumes of Pinus sylvestris , 2008 .

[4]  Timothy Masters,et al.  Practical neural network recipes in C , 1993 .

[5]  John E. Baumgras,et al.  Comparison of Estimates of Hardwood Bole Volume Using Importance Sampling, the Centroid Method, and Some Taper Equations , 2002 .

[6]  Geoffrey E. Hinton,et al.  Learning internal representations by error propagation , 1986 .

[7]  Hj Norussis,et al.  SPSS for Windows , 1993 .

[8]  Farouq S Mjalli,et al.  Use of artificial neural network black-box modeling for the prediction of wastewater treatment plants performance. , 2007, Journal of environmental management.

[9]  Léon Personnaz,et al.  A recursive algorithm based on the extended Kalman filter for the training of feedforward neural models , 1998, Neurocomputing.

[10]  Thobias Sando,et al.  Advantages and disadvantages of different crash modeling techniques. , 2005, Journal of safety research.

[11]  D. Papamichail,et al.  Cascade Correlation Artificial Neural Networks for Estimating Missing Monthly Values of Water Quality Parameters in Rivers , 2007 .

[12]  Xiaomei Xu,et al.  Applying neural net technology for multi-objective land use planning , 1991 .

[13]  A. Kozak,et al.  My last words on taper equations , 2004 .

[14]  Stavros Avramidis,et al.  Wood dielectric loss factor prediction with artificial neural networks , 2006, Wood Science and Technology.

[15]  Sandro Ridella,et al.  Convergence properties of cascade correlation in function approximation , 2005, Neural Computing & Applications.

[16]  Denis J. Dean,et al.  Comparative accuracies of artificial neural networks and discriminant analysis in predicting forest cover types from cartographic variables , 1999 .

[17]  Mohinder S. Grewal,et al.  Kalman Filtering: Theory and Practice , 1993 .

[18]  Kevin N. Gurney,et al.  An introduction to neural networks , 2018 .

[19]  Xuezhi Wen,et al.  Recent Applications of Artificial Neural Networks in Forest Resource Management: An Overview , 1999 .

[20]  B. Yegnanarayana,et al.  Artificial Neural Networks , 2004 .

[21]  Harold E. Burkhart,et al.  Segmented Polynomial Regression Applied to Taper Equations , 1976 .

[22]  Kevin Swingler,et al.  Applying neural networks - a practical guide , 1996 .

[23]  R. G. Oderwald,et al.  Dimensionally compatible volume and taper equations , 2001 .

[24]  G. B. Wood,et al.  Centroid sampling: A variant of importance sampling for estimating the volume of sample trees of radiata pine , 1990 .

[25]  Simon Haykin,et al.  Neural Networks: A Comprehensive Foundation , 1998 .

[26]  G. B. Wood,et al.  Comparison of three modern methods for estimating volume of sample trees using one or two diameter measurements , 1996 .

[27]  E. Doğan,et al.  Modeling biological oxygen demand of the Melen River in Turkey using an artificial neural network technique. , 2009, Journal of environmental management.

[28]  Laurene V. Fausett,et al.  Fundamentals Of Neural Networks , 1994 .

[29]  Maria J. Diamantopoulou,et al.  Artificial neural networks as an alternative tool in pine bark volume estimation , 2005 .

[30]  Shuhui Li,et al.  Extended Kalman Filter Training of Neural Networks on a SIMD Parallel Machine , 2002, J. Parallel Distributed Comput..

[31]  L. Zhang,et al.  Comparison of Neural Networks and Statistical Methods in Classification of Ecological Habitats Using FIA Data , 2003 .

[32]  T. Teshome Analysis of individual tree volume equations for Cupressus lusitanica in Munessa forest, Ethiopia , 2005 .

[33]  J. McTague,et al.  Simultaneous total and merchantable volume equations and a compatible taper function for loblolly pine , 1987 .

[34]  Christian Lebiere,et al.  The Cascade-Correlation Learning Architecture , 1989, NIPS.

[35]  G. B. Wood,et al.  Comparison of centroid and paracone estimates of tree volume , 1991 .

[36]  Bryce E. Schlaegel,et al.  Stem Profile for Southern Equations for Southern Tree Species , 1991 .

[37]  V. Simon,et al.  Reliability of tanoak volume equations when applied to different areas , 1995 .

[38]  P. Deusen,et al.  Efficient unbiased tree-volume estimation , 1987 .

[39]  M. Philip,et al.  Measuring Trees and Forests , 1994 .

[40]  Mohinder S. Grewal,et al.  Kalman Filtering: Theory and Practice Using MATLAB , 2001 .

[41]  Richard A. Brown,et al.  Introduction to random signals and applied kalman filtering (3rd ed , 2012 .

[42]  Taskin Kavzoglu,et al.  Increasing the accuracy of neural network classification using refined training data , 2009, Environ. Model. Softw..

[43]  M. Diamantopoulou,et al.  Comparative study of standard and modern methods for estimating tree bole volume of three species in Turkey , 2008 .

[44]  Lichun Jiang,et al.  Using Crown Ratio in Yellow-Poplar Compatible Taper and Volume Equations , 2007 .

[45]  R. Hebda,et al.  Modeling Tree-Ring Growth Responses to Climatic Variables Using Artificial Neural Networks , 2000, Forest Science.

[46]  G. B. Wood,et al.  Comparison of the Centroid Method and Taper Systems for Estimating Tree Volumes , 1993 .

[47]  D. MacFarlane,et al.  Regional stem profile model for cross-border comparisons of harvested red pine (Pinus resinosa Ait.) in Ontario and Michigan , 2006 .

[48]  D. Coble,et al.  Compatible Cubic-Foot Stem Volume and Upper- Stem Diameter Equations for Semi-intensive Plantation Grown Loblolly Pine Trees in East Texas , 2006 .