On the convergence properties of a majorized ADMM for linearly constrained convex optimization problems with coupled objective functions
暂无分享,去创建一个
Kim-Chuan Toh | Ying Cui | Defeng Sun | Xudong Li | K. Toh | Defeng Sun | Xudong Li | Ying Cui
[1] R. Glowinski. Lectures on Numerical Methods for Non-Linear Variational Problems , 1981 .
[2] Bingsheng He,et al. The direct extension of ADMM for multi-block convex minimization problems is not necessarily convergent , 2014, Mathematical Programming.
[3] R. Glowinski,et al. Numerical Methods for Nonlinear Variational Problems , 1985 .
[4] Kim-Chuan Toh,et al. A Schur complement based semi-proximal ADMM for convex quadratic conic programming and extensions , 2014, Mathematical Programming.
[5] Yurii Nesterov,et al. Gradient methods for minimizing composite functions , 2012, Mathematical Programming.
[6] F. Clarke. Optimization And Nonsmooth Analysis , 1983 .
[7] Bingsheng He,et al. On the O(1/n) Convergence Rate of the Douglas-Rachford Alternating Direction Method , 2012, SIAM J. Numer. Anal..
[8] D. Gabay. Applications of the method of multipliers to variational inequalities , 1983 .
[9] Dimitri P. Bertsekas,et al. On the Douglas—Rachford splitting method and the proximal point algorithm for maximal monotone operators , 1992, Math. Program..
[10] Damek Davis,et al. Convergence Rate Analysis of Several Splitting Schemes , 2014, 1406.4834.
[11] Kim-Chuan Toh,et al. A Majorized ADMM with Indefinite Proximal Terms for Linearly Constrained Convex Composite Optimization , 2014, SIAM J. Optim..
[12] J. Hiriart-Urruty,et al. Generalized Hessian matrix and second-order optimality conditions for problems withC1,1 data , 1984 .
[13] B. Mercier,et al. A dual algorithm for the solution of nonlinear variational problems via finite element approximation , 1976 .
[14] Renato D. C. Monteiro,et al. Iteration-Complexity of Block-Decomposition Algorithms and the Alternating Direction Method of Multipliers , 2013, SIAM J. Optim..
[15] Jonathan Eckstein,et al. Understanding the Convergence of the Alternating Direction Method of Multipliers: Theoretical and Computational Perspectives , 2015 .
[16] R. Glowinski,et al. Sur l'approximation, par éléments finis d'ordre un, et la résolution, par pénalisation-dualité d'une classe de problèmes de Dirichlet non linéaires , 1975 .